Displaying all 2 publications

Abstract:
Sort:
  1. Beck J, Holloway JD, Khen CV, Kitching IJ
    Am Nat, 2012 Sep;180(3):E64-74.
    PMID: 22854086 DOI: 10.1086/666982
    Tropical beta diversity, and particularly that of herbivorous insects in rainforests, is often considered to be enormous, but this notion has recently been challenged. Because tropical beta diversity is highly relevant to our view on biodiversity, it is important to gain more insights and to resolve methodological problems that may lead to contradictions in different studies. We used data on two ecologically distinct moth families from Southeast Asia and analyzed separately the contribution of beta components to overall species richness at three spatial scales. Observed diversity partitions were compared under different types of null models. We found that alpha diversity was lower than expected on the basis of null models, whereas hierarchical beta components were larger than expected. Beta components played a significant role in shaping gamma diversity, and their contribution can be high (multiplicative beta >5). We found a reduction in beta components when comparing primary forests to agricultural sites (cf. "biotic homogenization"), but even in these habitats, beta components were still substantial. Our analyses show that beta components do play an important role in our data on tropical herbivorous insects and that these results are not attributable to lumping different habitats when sampling environmental gradients.
  2. Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK
    Nat Commun, 2019 10 10;10(1):4612.
    PMID: 31601806 DOI: 10.1038/s41467-019-12655-y
    Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links