Displaying all 4 publications

Abstract:
Sort:
  1. Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, et al.
    Conserv Biol, 2016 10;30(5):950-61.
    PMID: 26648510 DOI: 10.1111/cobi.12667
    We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape-scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy-in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data-driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long-term metacommunity persistence.
  2. Tay EL, Hayashida K, Chen M, Yin WH, Park DW, Seth A, et al.
    J Card Surg, 2020 Sep;35(9):2142-2146.
    PMID: 32720374 DOI: 10.1111/jocs.14722
    OBJECTIVES: The impact of the COVID-19 pandemic on the treatment of patient with aortic valve stenosis is unknown and there is uncertainty on the optimal strategies in managing these patients.

    METHODS: This study is supported and endorsed by the Asia Pacific Society of Interventional Cardiology. Due to the inability to have face to face discussions during the pandemic, an online survey was performed by inviting key opinion leaders (cardiac surgeon/interventional cardiologist/echocardiologist) in the field of transcatheter aortic valve implantation (TAVI) in Asia to participate. The answers to a series of questions pertaining to the impact of COVID-19 on TAVI were collected and analyzed. These led subsequently to an expert consensus recommendation on the conduct of TAVI during the pandemic.

    RESULTS: The COVID-19 pandemic had resulted in a 25% (10-80) reduction of case volume and 53% of operators required triaging to manage their patients with severe aortic stenosis. The two most important parameters used to triage were symptoms and valve area. Periprocedural changes included the introduction of teleconsultation, preprocedure COVID-19 testing, optimization of protests, and catheterization laboratory set up. In addition, length of stay was reduced from a mean of 4.4 to 4 days.

    CONCLUSION: The COVID-19 pandemic has impacted on the delivery of TAVI services to patients in Asia. This expert recommendation on best practices may be a useful guide to help TAVI teams during this period until a COVID-19 vaccine becomes widely available.

  3. Wong ST, Guharajan R, Petrus A, Jubili J, Lietz R, Abrams JF, et al.
    Ecol Evol, 2022 Sep;12(9):e9337.
    PMID: 36188514 DOI: 10.1002/ece3.9337
    To offset the declining timber supply by shifting towards more sustainable forestry practices, industrial tree plantations are expanding in tropical production forests. The conversion of natural forests to tree plantation is generally associated with loss of biodiversity and shifts towards more generalist and disturbance tolerant communities, but effects of mixed-landuse landscapes integrating natural and plantation forests remain little understood. Using camera traps, we surveyed the medium-to-large bodied terrestrial wildlife community across two mixed-landuse forest management areas in Sarawak, Malaysia Borneo which include areas dedicated to logging of natural forests and adjacent planted Acacia forests. We analyzed data from a 25-wildlife species community using a Bayesian community occupancy model to assess species richness and species-specific occurrence responses to Acacia plantations at a broad scale, and to remote-sensed local habitat conditions within the different forest landuse types. All species were estimated to occur in both landuse types, but species-level percent area occupied and predicted average local species richness were slightly higher in the natural forest management areas compared to licensed planted forest management areas. Similarly, occupancy-based species diversity profiles and defaunation indices for both a full community and only threatened and endemic species suggested the diversity and occurrence were slightly higher in the natural forest management areas. At the local scale, forest quality was the most prominent predictor of species occurrence. These associations with forest quality varied among species but were predominantly positive. Our results highlight the ability of a mixed-landuse landscape with small-scale Acacia plantations embedded in natural forests to retain terrestrial wildlife communities while providing an alternate source of timber. Nonetheless, there was a tendency towards reduced biodiversity in planted forests, which would likely be more pronounced in plantations that are larger or embedded in a less natural matrix.
  4. Mendes CP, Albert WR, Amir Z, Ancrenaz M, Ash E, Azhar B, et al.
    Ecology, 2024 Apr 22.
    PMID: 38650359 DOI: 10.1002/ecy.4299
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links