Displaying all 7 publications

Abstract:
Sort:
  1. Chantavorakit T, Muangham S, Aaron TWF, Duangmal K, Hong K
    Int J Syst Evol Microbiol, 2023 Nov;73(11).
    PMID: 37994910 DOI: 10.1099/ijsem.0.006177
    The taxonomic position of two novel Actinoallomurus strains isolated from rhizosphere soil of wild rice (Oryza rufipogon Griff.) was established using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WRP6H-15T and WRP9H-5T were closely related to Actinoallomurus spadix JCM 3146T and Actinoallomurus purpureus TTN02-30T. Chemotaxonomic and morphological characteristics of both strains were consistent with members of the genus Actinoallomurus, while phenotypic properties, genome-based comparisons and phylogenomic analyses distinguished strains WRP6H-15T and WRP9H-5T from their closest phylogenetic relatives. The two strains showed nearly identical 16S rRNA gene sequences (99.9 %). Strain WRP6H-15T showed 68.7 % digital DNA-DNA hybridization, 95.9 % average nucleotide identity (ANI) based on blast and 96.4 % ANI based on MUMmer to strain WRP9H-5T. A phylogenomic tree based on draft genome sequences of the strains and representative of the genus Actinoallomurus confirmed the phylogenetic relationships. The genomes sizes of strains WRP6H-15T and WRP9H-5T were 9.42 Mb and 9.68 Mb, with DNA G+C contents of 71.5 and 71.3 mol%, respectively. In silico analysis predicted that the strains contain biosynthetic gene clusters encoding for specialized metabolites. Characterization based on chemotaxonomic, phylogenetic, phenotypic and genomic evidence demonstrated that strains WRP6H-15T and WRP9H-5T represent two novel species of the genus Actinoallomurus, for which the names Actinoallomurus soli sp. nov. (type strain WRP6H-15T=TBRC 15726T=NBRC 115556T) and Actinoallomurus rhizosphaericola sp. nov. (type strain WRP9H-5T=TBRC 15727T=NBRC 115557T) are proposed.
  2. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM, Hong K, et al.
    Int J Syst Evol Microbiol, 2014 Apr;64(Pt 4):1194-201.
    PMID: 24408529 DOI: 10.1099/ijs.0.059014-0
    A novel bacterium, strain MUSC 273(T), was isolated from mangrove sediments of the Tanjung Lumpur river in the state of Pahang in peninsular Malaysia. The bacterium was yellow-pigmented, Gram-negative, rod-shaped and non-spore-forming. The taxonomy of strain MUSC 273(T) was studied by a polyphasic approach and the organism showed a range of phenotypic and chemotaxonomic properties consistent with those of the genus Novosphingobium. The 16S rRNA gene sequence of strain MUSC 273(T) showed the highest sequence similarity to those of Novosphingobium indicum H25(T) (96.8 %), N. naphthalenivorans TUT562(T) (96.4 %) and N. soli CC-TPE-1(T) (95.9 %) and lower sequence similarity to members of all other species of the genus Novosphingobium. Furthermore, in phylogenetic analyses based on the 16S rRNA gene sequence, strain MUSC 273(T) formed a distinct cluster with members of the genus Novosphingobium. DNA-DNA relatedness of strain MUSC 273(T) to the type strains of the most closely related species, N. indicum MCCC 1A01080(T) and N. naphthalenivorans DSM 18518(T), was 29.2 % (reciprocal 31.0 %) and 17 % (reciprocal 18 %), respectively. The major respiratory quinone was ubiquinone Q-10, the major polyamine was spermidine and the DNA G+C content was 63.3±0.1 mol%. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine and sphingoglycolipid. The major fatty acids were C18 : 1ω7c, C17 : 1ω6c, C16 : 0, C15 : 0 2-OH and C16 : 1ω7c. Comparison of BOX-PCR fingerprints indicated that strain MUSC 273(T) represented a unique DNA profile. The combined genotypic and phenotypic data showed that strain MUSC 273(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium malaysiense sp. nov. is proposed. The type strain is MUSC 273(T) ( = DSM 27798(T) = MCCC 1A00645(T) = NBRC 109947(T)).
  3. Lee LH, Zainal N, Azman AS, Mutalib NA, Hong K, Chan KG
    Int J Syst Evol Microbiol, 2014 May;64(Pt 5):1461-1467.
    PMID: 24449791 DOI: 10.1099/ijs.0.058701-0
    A novel actinobacterial strain, designated MUSC 201T, was isolated from a mangrove soil collected from Kuantan, the capital city of Pahang State in Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 201T represented a novel lineage within the class Actinobacteria. Strain MUSC 201T formed a distinct clade in the family Nocardioidaceae and was most closely related to the members of the genera Nocardioides (16S rRNA gene sequence similarity, 91.9-95.1%), Aeromicrobium (92.7-94.6%), Marmoricola (92.5-93.1%) and Kribbella (91.5-92.4%). The cells of this strain were irregular coccoid to short rod shaped. The peptidoglycan contained ll-diaminopimelic acid as diagnostic diamino acid and the peptidoglycan type was A3γ. The peptidoglycan cell wall contained ll-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio of 1.5:0.9:1.0:1.5. The cell-wall sugars were galactose and rhamnose. The predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid and four unknown phospholipids. The major cellular fatty acids were C18:1ω9c (30.8%), C16:0 (24.1%), and 10-methyl C18:0 (13.9%). The DNA G+C content was 72.0±0.1 mol%. On the basis of phylogenetic and phenotypic differences from members of the genera of the family Nocardioidaceae, a novel genus and species, Mumia flava gen. nov., sp. nov. are proposed. The type strain of Mumia flava is MUSC 201T (=DSM 27763T=MCCC 1A00646T=NBRC 109973T).
  4. Lee LH, Cheah YK, Nurul Syakima AM, Shiran MS, Tang YL, Lin HP, et al.
    Genet. Mol. Res., 2012;11(2):1627-41.
    PMID: 22782582 DOI: 10.4238/2012.June.15.12
    Fifty-seven proteobacterium species were successfully isolated from soils of Barrientos Island of the Antarctic using 11 different isolation media. Analysis of 16S rDNA sequencing of these isolates showed that they belonged to eight different genera, namely Bradyrhizobium, Sphingomonas, Methylobacterium, Caulobacter, Paracoccus, Ralstonia, Rhizobium, and Staphylococcus. All isolates were studied for capability of producing antimicrobial and antifungal secondary metabolites using high-throughput screening models. Approximately 23 (13/57) and 2% (1/57) of isolates inhibited growth of Candida albicans ATCC 10231(T) and Staphylococcus aureus ATCC 51650(T), respectively. These results indicated that proteobacterium species isolates from Antarctic could serve as potential source of useful bioactive metabolites. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting produced nine clusters and 13 single isolates, with a high D value of 0.9248. RAPD fingerprinting produced six clusters and 13 single isolates, with a relatively low D value of 0.7776. ERIC-PCR analysis proved to have better discrimination capability than RAPD analysis and generated better clustering for all proteobacterium species isolates. We conclude that ERIC-PCR is a robust, reliable and rapid molecular typing method for discriminating different genera of proteobacteria.
  5. Mwase-Vuma TW, Janssen X, Okely AD, Tremblay MS, Draper CE, Florindo AA, et al.
    J Sci Med Sport, 2022 Dec;25(12):1002-1007.
    PMID: 36270900 DOI: 10.1016/j.jsams.2022.10.003
    OBJECTIVES: To validate parent-reported child habitual total physical activity against accelerometry and three existing step-count thresholds for classifying 3 h/day of total physical activity in pre-schoolers from 13 culturally and geographically diverse countries.

    DESIGN: Cross-sectional validation study.

    METHODS: We used data involving 3- and 4-year-olds from 13 middle- and high-income countries who participated in the SUNRISE study. We used Spearman's rank-order correlation, Bland-Altman plots, and Kappa statistics to validate parent-reported child habitual total physical activity against activPAL™-measured total physical activity over 3 days. Additionally, we used Receiver Operating Characteristic Area Under the Curve analysis to validate existing step-count thresholds (Gabel, Vale, and De Craemer) using step-counts derived from activPAL™.

    RESULTS: Of the 352 pre-schoolers, 49.1 % were girls. There was a very weak but significant positive correlation and slight agreement between parent-reported total physical activity and accelerometer-measured total physical activity (r: 0.140; p = 0.009; Kappa: 0.030). Parents overestimated their child's total physical activity compared to accelerometry (mean bias: 69 min/day; standard deviation: 126; 95 % limits of agreement: -179, 316). Of the three step-count thresholds tested, the De Craemer threshold of 11,500 steps/day provided excellent classification of meeting the total physical activity guideline as measured by accelerometry (area under the ROC curve: 0.945; 95 % confidence interval: 0.928, 0.961; sensitivity: 100.0 %; specificity: 88.9 %).

    CONCLUSIONS: Parent reports may have limited validity for assessing pre-schoolers' level of total physical activity. Step-counting is a promising alternative - low-cost global surveillance initiatives could potentially use pedometers for assessing compliance with the physical activity guideline in early childhood.

  6. Lee LH, Cheah YK, Sidik SM, Xie QY, Tang YL, Lin HP, et al.
    Int J Syst Evol Microbiol, 2013 Jan;63(Pt 1):241-248.
    PMID: 22389286 DOI: 10.1099/ijs.0.038232-0
    Three novel actinobacteria, strains 39(T), 40 and 41, were isolated from soil collected from Barrientos Island in the Antarctic. The taxonomic status of these strains was determined using a polyphasic approach. Comparison of 16S rRNA gene sequences revealed that strain 39(T) represented a novel lineage within the family Dermacoccaceae and was most closely related to members of the genera Demetria (96.9 % 16S rRNA gene sequence similarity), Branchiibius (95.7 %), Dermacoccus (94.4-95.3 %), Calidifontibacter (94.6 %), Luteipulveratus (94.3 %), Yimella (94.2 %) and Kytococcus (93.1 %). Cells were irregular cocci and short rods. The peptidoglycan type was A4α with an L-Lys-L-Ser-D-Asp interpeptide bridge. The cell-wall sugars were galactose and glucose. The major menaquinone was MK-8(H(4)). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, two glycolipids and one unknown phospholipid. The acyl type of the cell-wall polysaccharide was N-acetyl. The major cellular fatty acids were anteiso-C(17 : 0) (41.97 %), anteiso-C(17 : 1)ω9c (32.16 %) and iso-C(16 : 0) (7.68 %). The DNA G+C content of strain 39(T) was 68.4 mol%. On the basis of phylogenetic and phenotypic differences from other genera of the family Dermacoccaceae, a novel genus and species, Barrientosiimonas humi gen. nov., sp. nov., is proposed; the type strain of the type species is 39(T) (=CGMCC 4.6864(T) = DSM 24617(T)).
  7. Lee LH, Cheah YK, Mohd Sidik S, Ab Mutalib NS, Tang YL, Lin HP, et al.
    World J Microbiol Biotechnol, 2012 May;28(5):2125-37.
    PMID: 22806035 DOI: 10.1007/s11274-012-1018-1
    The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231(T), Staphylococcus aurues ATCC 51650(T), methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44(T) and Pseudomonas aeruginosa ATCC 10145(T), respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links