Displaying all 3 publications

Abstract:
Sort:
  1. Lin KH, Hsu HT, Teng TH, Lin PY, Ko CJ, Hsieh CE, et al.
    Malays J Pathol, 2017 Dec;39(3):289-291.
    PMID: 29279592
    BACKGROUND: Liver regeneration is dependent on the proliferation of hepatocytes. Hepatic progenitor cells are intra-hepatic precursor cells capable of differentiating into hepatocytes or biliary cells. Although liver progenitor cell proliferation during the regenerative process has been observed in animal models of severe liver injury, it has never been observed in vivo in humans because it is unethical to take multiple biopsy specimens for the purpose of studying the proliferation of liver progenitor cells and the roles they play in liver regeneration. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a staged procedure for inducing remnant liver hypertrophy so that major hepatectomy can be performed safely. This staged procedure allows for liver biopsy specimens to be taken before and after the liver begins to regenerate.

    CASE PRESENTATION: The liver progenitor cell proliferation is observed in a patient undergoing ALPPS for a metastatic hepatic tumour. Liver biopsy is acquired before and after ALPPS for the calculation of average number of liver progenitor cell under high magnification examination by stain of immunomarkers. This is the first in vivo evidence of growing liver progenitor cells demonstrated in a regenerating human liver.

  2. Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, et al.
    Ann Oncol, 2024 Dec;35(12):1181-1190.
    PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344
    BACKGROUND: Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment.

    PATIENTS AND METHODS: This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety.

    CLINICALTRIALS: gov identifier: NCT02578641.

    RESULTS: A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL.

    CONCLUSIONS: GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.

  3. Greco I, Beaudrot L, Sutherland C, Tenan S, Hsieh C, Gorczynski D, et al.
    PLoS Biol, 2025 Feb;23(2):e3002976.
    PMID: 39946310 DOI: 10.1371/journal.pbio.3002976
    Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links