Displaying 1 publication

Abstract:
Sort:
  1. Jafri NF, Salleh KM, Ghazali NA, Hua CC, Wang C, Zakaria S
    Int J Biol Macromol, 2025 Feb 05.
    PMID: 39920938 DOI: 10.1016/j.ijbiomac.2025.140707
    To maintain the versatility of a hydrogel, extensive modifications are necessary, particularly to overcome the daunting mechanical trait of this material. In agriculture especially, achieving the desired balance between strength and high water absorption ability with this polymer is a significant challenge. Therefore, this study used and evaluated both carboxymethyl cellulose (CMC) mesofiber (CMCF) and CMC-chitosan mesofiber (CMC/CHF) as a reinforcing agent at varying concentrations in the widely known regenerated cellulose hydrogel. These fibers were fined and revamped as mesofiber before being integrated into the cellulose solution for crosslinking and formation stages. The hydrogel filled with 2 wt% mesofiber, especially CMC/CHF exhibited the highest storage modulus value (3300 Pa), compression strength (0.315 MPa), and thermal stability, showing the resistivity of this composite towards external pressure. Morphologically, the distribution of smaller pores within the mesofiber-reinforced hydrogel improved along with the water absorption ability. The composite hydrogels, however, demonstrated lower transparency compared to the plain hydrogel due to the high loading of CMCF and complex CMC/CHF. The utilization of CMC/CHF is especially successful and effective in enhancing the resulting composite's mechanical strength and hydrophilicity. Thus, it is expected to be beneficial as a planting medium that provides both functionality and vitality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links