RESULTS: In this study, G6PDH was identified as a target for algal strain improvement, wherein G6PDH gene was successfully overexpressed and antisense knockdown in P. tricornutum, and systematic comparisons of the photosynthesis performance, algal growth, lipid content, fatty acid profiles, NADPH production, G6PDH activity and transcriptional abundance were performed. The results showed that, due to the enhanced G6PDH activity, transcriptional abundance and NAPDH production, overexpression of G6PDH accompanied by high-CO2 cultivation resulted in a much higher of both lipid content and growth in P. tricornutum, while knockdown of G6PDH greatly decreased algal growth as well as lipid accumulation. In addition, the total proportions of saturated and unsaturated fatty acid, especially the polyunsaturated fatty acid eicosapentaenoic acid (EPA; C20:5, n-3), were highly increased in high-CO2 cultivated G6PDH overexpressed strains.
CONCLUSIONS: The successful of overexpression and antisense knockdown of G6PDH well demonstrated the positive influence of G6PDH on algal growth and lipid accumulation in P. tricornutum. The improvement of algal growth, lipid content as well as polyunsaturated fatty acids in high-CO2 cultivated G6PDH overexpressed P. tricornutum suggested this G6PDH overexpression-high CO2 cultivation pattern provides an efficient and economical route for algal strain improvement to develop algal-based biodiesel production.
MATERIALS AND METHODS: Children aged less than 18 years treated for DIPG/DMG with initial fractionated photon radiotherapy (RT1) and had subsequent recurrence were retrospectively reviewed. Patients treated with or without RT2 were compared. The primary outcomes were overall survival (OS) from time of recurrence after RT1, and from start of RT2 (for the RT2 group).
RESULTS: A total of 118 children were included, 39 of whom received RT2. Children treated with RT2 had superior OS, with 6-month OS of 66 % vs 22 % in those who did not undergo RT2 (p