Displaying all 2 publications

Abstract:
Sort:
  1. Katayama A, Kume T, Ichihashi R, Nakagawa M
    Tree Physiol, 2019 06 01;39(6):1000-1008.
    PMID: 30976804 DOI: 10.1093/treephys/tpz022
    Limited knowledge about vertical variation in wood CO2 efflux (Rwood) is still a cause of uncertainty in Rwood estimates at individual and ecosystem scales. Although previous studies found higher Rwood in the canopy, they examined several tree species of similar size. In contrast, in the present study, we measured vertical variation in Rwood for 18 trees including 13 species, using a canopy crane for a more precise determination of the vertical variation in Rwood, for various species and sizes of trees in order to examine the factors affecting vertical variation in Rwood and thus, to better understand the effect of taking into account the vertical and inter-individual variation on estimates of Rwood at the individual scale. We did not find any clear pattern of vertical variation; Rwood increased significantly with measurement height for only one tree, while it decreased for two more trees, and was not significantly related with measurement height in 15 other trees. Canopy to breast height Rwood ratio was not related to diameter at breast height or crown ratio, which supposedly are factors affecting vertical variation in Rwood. On average, Rwood estimates at individual scale, considering inter-individual variation but ignoring vertical variation, were only 6% higher than estimates considering both forms of variation. However, estimates considering vertical variation, while ignoring inter-individual variation, were 13% higher than estimates considering both forms of variation. These results suggest that individual measurements at breast height are more important for estimating Rwood at the individual scale, and that any error in Rwood estimation at this scale, due to the absence of any more measurements along tree height, is really quite negligible. This study measured various species and sizes of trees, which may be attributed to no clear vertical variation because factors causing vertical variation can differ among species and sizes.
  2. Katayama A, Kume T, Komatsu H, Ohashi M, Matsumoto K, Ichihashi R, et al.
    Tree Physiol, 2014 May;34(5):503-12.
    PMID: 24876294 DOI: 10.1093/treephys/tpu041
    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links