Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception.
Robots primarily made of soft and elastic materials have potential applications such as traveling in confined spaces due to their adaptive morphology. However, their energy efficiency is still subject to improvement. Although a possible approach to increase efficiency is by harvesting the energy used during their behavioral motion, it is not trivial to do so due to their complex dynamics. This work seeks to pioneer a study that exploits the tight coupling between a robot's adaptive morphology, control, and consequent behaviors to harvest energy and increase energy efficiency. It is hypothesized that since varying the robot's morphology may change the energy use that leads to contrasting behavior and efficiency, harvesting the robot's energy will need to be adapted to its morphology. To verify the hypothesis, we developed a shape-changing robot with an elastic structure that achieves locomotion via vibration controlled by a single motor, such that the complex dynamics of the robot can be characterized through its resonance frequencies. It will be shown that harvesting energy at opportune occasions is more important than maximizing the harvest capacity to increase energy efficiency. We will also show how the robot's shape affects energy use in locomotion and how energy harvesting will feedback additional energy that increases the magnitude and affects the robot's behavior. We conclude with an understanding of the role of the robot's morphology, that is, shape, in using the energy provided to the robot and how the understanding can be used to harvest the robot's energy to increase its efficiency.