Displaying all 4 publications

Abstract:
Sort:
  1. Khalili Samani N, Esa Y, Amin SM, Fatin Mohd Ikhsan N
    PeerJ, 2016;4:e1930.
    PMID: 27231645 DOI: 10.7717/peerj.1930
    Plotosus canius (Hamilton, 1822) is a significant marine species in Malaysia from nutritional and commercial perspectives. Despite numerous fundamental research on biological characteristics of P. canius, there are various concerns on the level of population differentiation, genomic structure, and the level of genetic variability among their populations due to deficiency of genetic-based studies. Deficiency on basic contexts such as stock identification, phylogenetic relationship and population genetic structure would negatively impact their sustainable conservation. Hence, this study was conducted to characterize the genetic structure of P. canius for the first time through the application of mitochondrial Cytochrome Oxidase I (COI) gene, cross amplification of Tandanus tandanus microsatellites, and a total of 117 collected specimens across five selected populations of Malaysia. The experimental results of the mitochondrial analysis revealed that the haplotype diversity and nucleotide diversity varied from 0.395-0.771 and 0.033-0.65 respectively. Moreover, the statistical analysis of microsatellites addressed a considerable heterozygote insufficiency in all populations, with average observed heterozygosity (Ho ) value of 0.2168, which was lower than the standard heterozygosity in marine populations (Ho = 0.79). This alongside the high Fis values estimation, high pairwise differentiation among populations and low within population variations are supposed to be associated with small sample size, and inbreeding system. Besides, the significant finding of this study was the sharing of common haplotype KR086940, which reflects a historical genetic connectivity between Peninsular Malaysia and Borneo populations due to the geological history of Southeast Asia during Pleistocene era. Demographic analyses showed that all populations were in an equilibrium state with no significant evidence of population expansion. To put it briefly, the current study has managed to provide an initial genomic database toward understanding of the genetic characterization, phylogenetic, molecular diversification and population structure in P. canius, and should be necessary highlighted for appropriate management and conservation of species. Further studies must be carried out involving more geographical and sampling sites, larger population size per site, and utilization of species specific microsatellites loci.
  2. Shafiei SNS, Ahmad K, Ikhsan NFM, Ismail SI, Sijam K
    Braz J Biol, 2020 2 20;81(1):11-17.
    PMID: 32074168 DOI: 10.1590/1519-6984.206124
    Xanthomonas oryzae pv. oryzae (Xoo), a pathogen responsible for rice bacterial leaf blight, produces biofilm to protect viable Xoo cells from antimicrobial agents. A study was conducted to determine the potency of Acacia mangium methanol (AMMH) leaf extract as a Xoo biofilm inhibitor. Four concentrations (3.13, 6.25, 9.38, and 12.5 mg/mL) of AMMH leaf extract were tested for their ability to inhibit Xoo biofilm formation on a 96-well microtiter plate. The results showed that the negative controls had the highest O.D. values from other treatments, indicating the intense formation of biofilm. This was followed by the positive control (Streptomycin sulfate, 0.2 mg/mL) and AMMH leaf extract at concentration 3.13 mg/mL, which showed no significant differences in their O.D. values (1.96 and 1.57, respectively). All other treatments at concentrations of 6.25, 9.38, and 12.5 mg/mL showed no significant differences in their O.D. values (0.91, 0.79, and 0.53, respectively). For inhibition percentages, treatment with concentration 12.5 mg/mL gave the highest result (81.25%) followed by treatment at concentrations 6.25 and 9.38 mg/mL that showed no significant differences in their inhibition percentage (67.75% and 72.23%, respectively). Concentration 3.13 mg/mL resulted in 44.49% of biofilm inhibition and the positive control resulted in 30.75% of biofilm inhibition. Confocal laser scanning microscopy (CLSM) analysis of Xoo biofilm inhibition and breakdown showed the presence of non-viable Xoo cells and changes in aggregation size due to increase in AMMH leaf extract concentration. Control slides showed the absence of Xoo dead cells.
  3. Mohamed Alipiah N, Salleh A, Sarizan NM, Ikhsan N
    Dev Comp Immunol, 2024 Aug 19.
    PMID: 39168397 DOI: 10.1016/j.dci.2024.105253
    The pathogen recognition system involves receptors and genes that play a crucial role in activating innate immune response in brown-marbled grouper (Epinephelus fuscoguttatus) as a control agent against various infections including vibriosis. Here, we report the molecular cloning of partial open reading frames, sequences characterization, and expression profiles of Pattern Recognition Receptors (PRRs) in brown-marbled grouper. The PRRs, namely pglyrp5, tlr5, ctlD, and ctlE in brown-marbled grouper, possess conserved domains and showed shared evolutionary relationships with other fishes, humans, mammals, birds, reptilians, amphibians, and insects. In infection experiments, up to 50% mortality was found in brown-marbled grouper fingerlings infected with Vibrio alginolyticus compared to 27% mortality infected Vibrio parahaemolyticus and 100% survival of control groups. It is also demonstrated that all four PRRs had higher expression in samples infected with V. alginolyticus compared to V. parahaemolyticus. This PRRs gene expression analysis revealed that all four PRRs expressed rapidly at 4-h post-inoculation even though the Vibrio count was only detected earliest at 12-h post-inoculation in samples. The highest expression recorded was from V. alginolyticus inoculated fish spleen with up to 73-fold change for pglyrp5 gene, followed by 14 to 38-fold expression for the same treatment in spleen, head kidney, and blood samples for other PRRs, namely tlr5, ctlD, and ctlE genes. Meanwhile less than a 10% increase in expression of all four genes was detected in spleen, head kidney, and blood samples inoculated with V. parahaemolyticus. These findings indicated that pglyrp5, tlr5, ctlD, and ctlE play important roles in the early immune response to vibriosis infected, brown-marbled grouper fingerlings.
  4. Rosland NA, Ikhsan N, Min CC, Yusoff FM, Karim M
    Curr Microbiol, 2021 Nov;78(11):3901-3912.
    PMID: 34522979 DOI: 10.1007/s00284-021-02642-2
    The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae-bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links