Displaying all 4 publications

Abstract:
Sort:
  1. Berki DM, Liu L, Choon SE, David Burden A, Griffiths CEM, Navarini AA, et al.
    J Invest Dermatol, 2015 Dec;135(12):2964-2970.
    PMID: 26203641 DOI: 10.1038/jid.2015.288
    Caspase recruitment family member 14 (CARD14, also known as CARMA2), is a scaffold protein that mediates NF-κB signal transduction in skin keratinocytes. Gain-of-function CARD14 mutations have been documented in familial forms of psoriasis vulgaris (PV) and pityriasis rubra pilaris (PRP). More recent investigations have also implicated CARD14 in the pathogenesis of pustular psoriasis. Follow-up studies, however, have been limited, so that it is not clear to what extent CARD14 alleles account for the above conditions. Here, we sought to address this question by carrying out a systematic CARD14 analysis in an extended patient cohort (n=416). We observed no disease alleles in subjects with familial PV (n=159), erythrodermic psoriasis (n=23), acral pustular psoriasis (n=100), or sporadic PRP (n=29). Conversely, our analysis of 105 individuals with generalized pustular psoriasis (GPP) identified a low-frequency variant (p.Asp176His) that causes constitutive CARD14 oligomerization and shows a significant association with GPP in Asian populations (P=8.4×10(-5); odds ratio=6.4). These data indicate that the analysis of CARD14 mutations could help stratify pustular psoriasis cohorts but would be mostly uninformative in the context of psoriasis and sporadic PRP.
  2. Twelves S, Mostafa A, Dand N, Burri E, Farkas K, Wilson R, et al.
    J Allergy Clin Immunol, 2019 03;143(3):1021-1026.
    PMID: 30036598 DOI: 10.1016/j.jaci.2018.06.038
    BACKGROUND: The term pustular psoriasis indicates a group of severe skin disorders characterized by eruptions of neutrophil-filled pustules. The disease, which often manifests with concurrent psoriasis vulgaris, can have an acute systemic (generalized pustular psoriasis [GPP]) or chronic localized (palmoplantar pustulosis [PPP] and acrodermatitis continua of Hallopeau [ACH]) presentation. Although mutations have been uncovered in IL36RN and AP1S3, the rarity of the disease has hindered the study of genotype-phenotype correlations.

    OBJECTIVE: We sought to characterize the clinical and genetic features of pustular psoriasis through the analysis of an extended patient cohort.

    METHODS: We ascertained a data set of unprecedented size, including 863 unrelated patients (251 with GPP, 560 with PPP, 28 with ACH, and 24 with multiple diagnoses). We undertook mutation screening in 473 cases.

    RESULTS: Psoriasis vulgaris concurrence was lowest in PPP (15.8% vs 54.4% in GPP and 46.2% in ACH, P 

  3. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
  4. Hussain S, Berki DM, Choon SE, Burden AD, Allen MH, Arostegui JI, et al.
    J Allergy Clin Immunol, 2015 Apr;135(4):1067-1070.e9.
    PMID: 25458002 DOI: 10.1016/j.jaci.2014.09.043
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links