Displaying all 2 publications

Abstract:
Sort:
  1. Ng DPJ, Duffull SB, Faed JM, Isbister GK, Gulati A
    Clin Appl Thromb Hemost, 2018 May;24(4):669-676.
    PMID: 28731370 DOI: 10.1177/1076029617711802
    A well-accepted test for monitoring anticoagulation by enoxaparin is not currently available. As inadequate dosing may result in thrombosis or bleeding, a clinical need exists for a suitable test. Previous in silico and in vitro studies have identified factor Xa as an appropriate activating agent, and the phospholipid Actin FS as a cofactor for a Xa clotting time (TenaCT) test. A proof-of-concept study was designed to (1) explore the reproducibility of the TenaCT test and (2) explore factors that could affect the performance of the test. In vitro clotting time tests were carried out using plasma from 20 healthy volunteers. The effect of enoxaparin was determined at concentrations of 0.25, 0.50, and 1.0 IU/mL. Clotting times for the volunteers were significantly prolonged with increasing enoxaparin concentrations. Clotting times were significantly shortened for frozen plasma samples. No significant differences in prolongation of clotting times were observed between male and female volunteers or between the 2 evaluated age groups. The clotting times were consistent between 2 separate occasions. The TenaCT test was able to distinguish between the subtherapeutic and therapeutic concentrations of enoxaparin. Plasma should not be frozen prior to performing the test, without defining a frozen plasma reference range. This study provided proof-of-concept for a Xa-based test that can detect enoxaparin dose effects, but additional studies are needed to further develop the test.
  2. Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, Isbister GK
    Neurotox Res, 2017 01;31(1):11-19.
    PMID: 27401825 DOI: 10.1007/s12640-016-9650-4
    Russell's vipers are snakes of major medical importance in Asia. Russell's viper (Daboia russelii) envenoming in Sri Lanka and South India leads to a unique, mild neuromuscular paralysis, not seen in other parts of the world where the snake is found. This study aimed to identify and pharmacologically characterise the major neurotoxic components of Sri Lankan Russell's viper venom. Venom was fractionated using size exclusion chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). In vitro neurotoxicities of the venoms, fractions and isolated toxins were measured using chick biventer and rat hemidiaphragm preparations. A phospholipase A2 (PLA2) toxin, U1-viperitoxin-Dr1a (13.6 kDa), which constitutes 19.2 % of the crude venom, was isolated and purified using HPLC. U1-viperitoxin-Dr1a produced concentration-dependent in vitro neurotoxicity abolishing indirect twitches in the chick biventer nerve-muscle preparation, with a t 90 of 55 ± 7 min only at 1 μM. The toxin did not abolish responses to acetylcholine and carbachol indicating pre-synaptic neurotoxicity. Venom, in the absence of U1-viperitoxin-Dr1a, did not induce in vitro neurotoxicity. Indian polyvalent antivenom, at the recommended concentration, only partially prevented the neurotoxic effects of U1-viperitoxin-Dr1a. Liquid chromatography mass spectrometry analysis confirmed that U1-viperitoxin-Dr1a was the basic S-type PLA2 toxin previously identified from this venom (NCBI-GI: 298351762; SwissProt: P86368). The present study demonstrates that neurotoxicity following Sri Lankan Russell's viper envenoming is primarily due to the pre-synaptic neurotoxin U1-viperitoxin-Dr1a. Mild neurotoxicity observed in severely envenomed Sri Lankan Russell's viper bites is most likely due to the low potency of U1-viperitoxin-Dr1a, despite its high relative abundance in the venom.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links