Displaying all 3 publications

Abstract:
Sort:
  1. Itas YS, Razali R, Tata S, Kolo M, Osman H, Idris AM, et al.
    Sci Technol Adv Mater, 2023;24(1):2271912.
    PMID: 38024795 DOI: 10.1080/14686996.2023.2271912
    This work investigates the fundamental photocatalytic properties of nitrogen-doped single-walled silicon carbide nanotubes (N-doped SWSiCNTs) for hydrogen evolution for the first time. Investigations of the structural, mechanical, electronic, and optical properties of the studied systems were carried out using popular density functional theory implemented in quantum ESPRESSO and Yambo codes. Analysis of the structural properties revealed high mechanical stability with the 3.6% and 7.4% N-doped SWSiCNT. The calculated band gap of the N-doped SWSiCNT with 3.6% demonstrated a value of 2.56 eV which is within the photocatalytic range of 2.3 eV-2.8 eV. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) potentials of the 3.6% N-doped SWSiCNT also showed good agreement with previous theoretical data. The studied material showed the best photocatalytic performance in both parallel and perpendicular directions by absorbing photons in the visible region. Therefore, the observed structural, mechanical, electronic and optical behaviors demonstrated by the 3.6% N-doped SWSiCNT exposed it as a better photocatalyst for hydrogen production under visible light.
  2. Itas YS, Suleiman AB, Ndikilar CE, Lawal A, Razali R, Ullah MH, et al.
    ACS Omega, 2023 Oct 17;8(41):38632-38640.
    PMID: 37867711 DOI: 10.1021/acsomega.3c05907
    This study investigated the photocatalytic properties of MoS2-doped boron nitride nanotubes (BNNTs) for overall water splitting using popular density functional theory (DFT). Calculations of the structural, mechanical, electronic, and optical properties of the investigated systems were performed using both the generalized gradient approximation and the GW quasi-particle correction methods. In our calculations, it was observed that only (10, 10) and (12, 12) single-walled BNNTs (SWBNNTs) turned out to be stable toward MoS2 doping. Electronic property calculations revealed metallic behavior of (10, 10)-MoS2-doped SWBNNTs, while the band gap of (12, 12) SWBNNT was narrowed to 2.5 eV after MoS2 doping, which is within the obtained band gaps for other photocatalysts. Hence, MoS2 influences the conduction band of pure BNNT and improves its photocatalytic properties. The water-splitting photocatalytic behavior is found in (12, 12) MoS2-doped SWBNNT, which showed higher water oxidation (OH-/O2) and reduction (H+/H2) potentials. In addition, optical spectral calculations showed that MoS2-doped SWBNNT had an optical absorption edge of 2.6 eV and a higher absorption in the visible region. All of the studied properties confirmed MoS2-doped SWBNNT as a better candidate for next-generation photocatalysts for hydrogen evolution through the overall water-splitting process.
  3. Itas YS, Isah KA, Nuhu AH, Razali R, Tata S, K A N, et al.
    RSC Adv, 2023 Aug 04;13(34):23659-23668.
    PMID: 37564254 DOI: 10.1039/d3ra03838f
    This work investigates the structural, elastic, electronic, and photoabsorption properties of boron- (N-deficient) and nitrogen- (B-deficient) doped single-walled boron nitride nanotube (SWBNNT) for photocatalytic applications for the first time. All calculations of the optimized systems were performed with DFT quantum simulation codes. The results of the structural analysis showed that SWBNNT is stable to both B and N dopants. It was also observed that the photodecomposition activity of the B-doped nanotube improved significantly under the condition of slight compressive stress, while it decreased for the N-doped nanotube. Therefore, N-doped SWBNNT showed poor performance under external pressure. Both B and N-doped systems could narrow the wide band gap of SWBNNT to the photocatalytic region below 3 eV, therefore this material can be used as photocatalysts in water splitting for hydrogen evolution, dye degradation, wastewater treatment, etc. Analysis of the optical properties revealed that B-doped SWBNNT absorbs more photons in the visible range than the N-doped SWBNNT and can therefore be considered as a more efficient photocatalyst. In addition, it was found that all doped nanotubes are anisotropic since the absorption in one direction of nanotube axes is worse than the other.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links