Displaying all 3 publications

Abstract:
Sort:
  1. Iyaswamy A, Vasudevan K, Jayaraman S, Jaganathan R, Thakur A, Chang RC, et al.
    Front Mol Biosci, 2023;10:1162879.
    PMID: 37006608 DOI: 10.3389/fmolb.2023.1162879
  2. Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, et al.
    Biomedicines, 2023 Jul 21;11(7).
    PMID: 37509695 DOI: 10.3390/biomedicines11072056
    Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.
  3. Iyaswamy A, Wang X, Zhang H, Vasudevan K, Wankhar D, Lu K, et al.
    J Mater Chem B, 2024 Jul 09.
    PMID: 38978513 DOI: 10.1039/d4tb00479e
    Extracellular clustering of amyloid-β (Aβ) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aβ1-42, Iowa mutation Aβ, Dutch mutation Aβ fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aβ aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aβ positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aβ specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aβ species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aβ aggregate formation of Aβ1-42, Iowa mutation Aβ, and Dutch mutation Aβ. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links