Knee injuries are musculoskeletal system injuries, including the Anterior Cruciate Ligament (ACL). ACL injuries are most common in athletes. This ACL injury necessitates biomaterial replacement. It is sometimes taken from the patient's tendon and a biomaterial scaffold is used. The use of biomaterial scaffolds as artificial ACLs remains to be investigated. The purpose of this study is to determine the properties of an ACL scaffold made of polycaprolactone (PCL)-hydroxyapatite (HA) and collagen with various composition variations of (50 : 45 : 5), (50 : 40 : 10), (50 : 35 : 15), (50 : 30 : 20), and (50 : 25 : 25) wt%. The scaffold was created using the electrospinning method with a voltage of 23 kV, a needle-collector distance of 15 cm, and a solution flow rate of 2 mL h-1. The average fiber diameter in all samples was less than 1000 nm. The model with the best characterization was PCL : HA : collagen with a weight-to-weight (wt%) ratio of 50 : 45 : 5 and an average fiber diameter of 488 ± 271 nm. The UTS and modulus of elasticity for braided samples were 2.796 MPa and 3.224 MPa, respectively, while the non-braided samples were 2.864 MPa and 12.942 MPa. The estimated time of degradation was 9.44 months. It was also revealed to be non-toxic, with an 87.95% viable cell percentage.
One approach to addressing bone defects involves the field of bone tissue engineering, with scaffolds playing an important role. The properties of the scaffold must be similar to those of natural bone, including pore size, porosity, interconnectivity, mechanical attributes, degradation rate, non-toxicity, non-immunogenicity, and biocompatibility. The primary goals of this study are as follows: first, to evaluate hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin nanofiber scaffolds based on functional groups, fibre diameter, porosity, and degradation rate; second, to investigate the interaction between HA/PCL/gelatin scaffolds and osteoblast cells (specifically, the ATCC 7F2 cell line) using in vitro assays, including cell viability and adhesion levels. The fibre samples were fabricated using an electrospinning technique with a 15 kV voltage, a spinneret-collector distance of 10 cm, and a flow rate of 0.3 mL hour-1. The process was applied to five different HA/PCL/gelatin concentration ratios: 50 : 40 : 10; 50 : 30 : 20; 50 : 25 : 25; 50 : 20 : 30; 50 : 35 : 15 (in %wt). Fourier Transform Infrared (FTIR) spectrum analysis and tests revealed no differences in functional groups across the five compositions. The identified functional groups include PO4 3-, OH-, CO3 2- and C[double bond, length as m-dash]O stretching. Notably, an increase in PCL concentrations resulted in larger fiber diameters, ranging from 369-1403 nm with an average value of 929 ± 175 nm. The highest porosity percentage was (77.27 ± 11.57) %, and a sufficient degradation rate of up to 3.5 months facilitated the proliferation process of osteoblast cells. Tensile strength assessments revealed a significant increase in tensile strength with the addition of PCL, reaching a peak of 1.93 MPa. The MTT assay demonstrated a discernible increase in cell proliferation, as evidenced by increased cell viability percentages on days 1, 3, and 5. Concurrently, the fluorescence microscopy examination indicated an increase in cell numbers, which was especially noticeable on days 1 and 5. The SEM analysis confirmed the biocompatibility of the HA/PCL/gelatin nanofiber scaffold, as osteoblast cells attached and dispersed successfully five days after seeding. Based on these findings, the HA/PCL/gelatin nanofiber scaffold emerges as a very promising candidate for treating bone damage.