Displaying all 2 publications

Abstract:
Sort:
  1. Shahul Hamid MY, Triwahyono S, Jalil AA, Che Jusoh NW, Izan SM, Tuan Abdullah TA
    Inorg Chem, 2018 May 21;57(10):5859-5869.
    PMID: 29746104 DOI: 10.1021/acs.inorgchem.8b00241
    Nickel (Ni), cobalt (Co), and zinc (Zn) loaded on fibrous silica KCC-1 was investigated for CO2 methanation reactions. Ni/KCC-1 exhibits the highest catalyst performance with a CH4 formation rate of 33.02 × 10-2 molCH4 molmetal-1 s-1, 1.77 times higher than that of Co/KCC-1 followed by Zn/KCC-1 and finally the parent KCC-1. A pyrrole adsorption FTIR study reveals shifting of perturbed N-H stretching decreasing slightly with the addition of metal oxide, suggesting that the basic sites of catalyst were inaccessible due to metal oxide deposition. The strengths of basicity were found to follow sthe equence KCC-1, Ni/KCC-1, Zn/KCC-1, and Co/KCC-1. The data were supported by N2 adsorption desorption analysis, where Co/KCC-1 displayed the greatest reduction in total surface area whereas Ni/KCC-1 displayed the least reduction. The elucidation of difference mechanism pathways has also been studied by in situ IR spectroscopy studies to determine the role of different metal oxides in CO2 methanation. It was discovered that Ni/KCC-1 and Co/KCC-1 follow a dissociative mechanism of CO2 methanation in which the CO2 molecule was dissociated on the surface of the metal oxide before migration onto the catalyst surface. This was confirmed by the evolution of a peak corresponding to carbonyl species (COads) on a metal oxide surface in FTIR spectra. Zn/KCC-1, on the other hand, showed no such peak, indicating associative methanation pathways where a hydrogen molecule interacts with an O atom in CO2 to form COads and OH. These results offers a better understanding for catalytic studies, particularly in the field of CO2 recycling.
  2. Izan SM, Jalil AA, Hitam CKNLCK, Nabgan W
    Inorg Chem, 2020 Feb 03;59(3):1723-1735.
    PMID: 31961141 DOI: 10.1021/acs.inorgchem.9b02914
    Phosphate and nitrate were loaded on silica BEA (P/HSi@BEA and N/HSi@BEA), which is fibrously protonated by the impregnation method for n-hexane and cyclohexane isomerization. The characterization analysis specified the removal of tetrahedral aluminum atoms in the framework, which was triggered by the existence of phosphate and nitrate groups in the catalyst. The exchanged role of Si(OH)Al to P-OH as active acidic sites in the P/HSi@BEA catalyst reduced its acidic strength, which was confirmed by the FTIR results. Lewis acidic sites of P/HSi@BEA performance are a significant part in the generation of high protonic acid sites, as proven by the in situ ESR study. However, FTIR evacuation and 27Al NMR revealed that the reduction in the amount of extraframework Al (EFAl) is due to its interaction with the nitrate group on the outside of the catalyst surface. The N/HSi@BEA catalyst exhibited high acidic strength because of the existence of more Si(OH)Al, which was initiated during the nitrate-incorporation process. Of significance is that the catalytic performance of n-hexane isomerization in the presence of hydrogen reached 50.3% product isomer yield at 250 °C, which might be ascribed to the presence of P-OH active sites that are responsible for accepting electrons, forming active protonic acid sites. NO3-EFAl interaction induced the formation of Brønsted acid sites, and higher mesopore volume favors the production of cyclohexane isomers up to 48.4% at 250 °C. This fundamental study exhibits that significant interactions given by such phosphate and nitrate groups with the unique silica fibrous BEA support could enhance isomerization, which contributes to the high quality of fuel.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links