Subcritical water extraction (SCW) was used to extract oil from Chlorella pyrenoidosa. The operational factors such as reaction temperature, reaction time, and biomass loading influence the oil yield during the extraction process. In this study, response surface methodology was employed to identify the desired extraction conditions for maximum oil yield. Experiments were carried out in batch reactors as per central composite design with three independent factors including reaction temperature (170, 220, 270, 320, and 370°C), reaction time (1, 5, 10, 15, and 20 min), and biomass loading (1, 3, 5, 10, and 15%). A maximum oil yield of 12.89 wt.% was obtained at 320°C and 15 min, with 3% biomass loading. Sequential model tests showed the good fit of experimental data to the second-order quadratic model. This study opens the great potential of SCW to extract algal oil for use in algal biofuel production.
Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.
With the advancement of the fourth industrial revolution, the demand for LCD has widely accelerated as monitoring screens for computers and cell phones. Consequently, old LCD panels are expected to end up as a tremendous amount of e-waste. Apart from transparent electrodes and transistor, waste LCD panel also contains hazardous liquid crystal compound that can contaminate the landfill site. Thus, removing the material from waste LCD was investigated. In this study, water at subcritical state was applied at temperatures between 100 and 360 °C. Initially, the liquid crystals were extracted using toluene and were used to compare with subcritical water. The specific compounds of the liquid crystals were not identified. The liquid crystals (12 mg/g-LCD) were entirely removed from the LCD panel when treated above 300 °C by means of extraction with the subcritical water. Although liquid crystal was successfully removed, recovery was complicated due to the degradation of liquid crystals above 250 °C. A recovery of 70% was obtained at 250 °C without deformation of the molecules. Consequently, this study has shown that although it is not practical to recover LC from LCD panel waste using subcritical water, liquid crystals can be removed efficiently. This method is auspicious in reducing hazardous liquid crystal from waste LCD panel before their disposals at landfill sites.
Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180-374°C), extraction time (1-20 min), biomass particulate size (38-250 μm), and microalgal biomass loading (5-40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production.