METHODS: In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized.
RESULTS: Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate.
CONCLUSION: Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health.
CONTENT: The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022.
SUMMARY AND OUTLOOK: A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
AIM: The purpose of this study was to analyse the relationship between risk quotient (RQ) of non-carcinogenic risk assessment of benzene and demographic factors on IgA levels.
MATERIAL AND METHODS: The subjects of the study were shoe craftsmen who were at risk of benzene exposure. The study design was cross-sectional with a total population of 20 workers. Measurement of IgA levels by Immunoturbidimetric Assay with a normal standard of 2-3 mg/ml. Calculation of non-carcinogenic (RQ) risk characteristics with a comparison between risk agent non-carcinogenic intake with RfD or RfC benzene.
RESULTS: The majority of the study subjects aged over 45 years and had a working period of ≥ 25 years. There were 2 location points that had a threshold value exceeding the benzene standard (> 0.05 ppm), and 40% of the subjects had decreased IgA levels. Age and working periods had a significant relationship to IgA levels (p = 0.027; p = 0.047), while benzene and RQ levels did not have a significant relationship with IgA levels (p = 0.179; p = 0.436).
CONCLUSION: Increasing age and working period can reduce IgA levels in the body. Further research is needed on risk assessment, especially on the safe limits of benzene concentration in the workplace to find out how long benzene exposure forms a non-carcinogenic or carcinogenic risk in workers' bodies exposed to benzene.
METHODS: A cross-sectional study was undertaken among secondary school students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia. The survey was completed by 96 students at the age of 14 by using the International Study of Asthma and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS) questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick test and sputum induction were performed for all students. Induced sputum samples were analysed for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured inside the classrooms.
RESULTS: Chemometric and regression results have clustered the expression of CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile, for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a model prediction accuracy of 72.92% and 71.88%, respectively.
CONCLUSION: The findings indicated that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils, following the activation mechanisms that led to the inflammatory reactions.
DESIGN AND METHOD: This study was conducted using a cross sectional study with 75 students collected randomly from four junior high schools in Jakarta. PM2.5 and NO2 were measured in classrooms and school yards. The schools were categorized based on the exposure level of PM2.5 and NO2 in classrooms. Superoxide dismutase (SOD) and reduced glutathione (GSH) were examined from the blood sample. All students were interviewed with questionnaires to determine upper respiratory tract infection, smoking family members, mosquito repellent usage, and dietary supplement consumption.
RESULTS: Mean concentration of indoor PM2.5 and NO2 were 0.125±0.036 mg m-3 and 36.37±22.33 µg m-3, respectively. The schools which located near to highway showed lower PM2.5 and higher NO2 level indicated the emission of traffic activity. Mean activity of SOD was 96.36±50.94 U mL-1 and mean concentration of GSH was of 0.62±0.09 µg mL-1. Most of the students reported upper respiratory tract infection history, smoking family member, use mosquito repellent at home, and do not consume dietary supplement.
CONCLUSION: The level of oxidative stress markers and the exposure categories of classroom PM2.5 and NO2 was not significantly different, however there were significant correlation with cigarette smoke and mosquito repellent at home. Nevertheless, the exposure of indoor PM2.5 and NO2 increased the risk of the exposure to cigarette smoke and mosquito repellent at home. Further study on the air pollution at school and home is needed to affirm association towards student's health and to design strategic control efforts.
CONTENT: This project was undertaken by a Thematic Working Group on Environmental Health Experts (TWG 10) under the Malaysian National Environmental Health Action Plan. Sixteen pre-selected environmental health issues were presented to a two focus group discussions among 20 environmental health and related professionals who then scored each issue on its magnitude and severity scale.
SUMMARY: The total of these scores generated a list of priority environmental health issues for Malaysia. Children environmental health came out as the environmental health issue of the highest priority.
OUTLOOK: We hope that this list of priority environmental health issues will be used for prioritising academic and professional manpower training, research funding allocation and planning for intervention programmes by various stakeholders.
METHODS: Data on health and home were collected by a face-to face interview before measuring FeNO and performing skin prick test against common allergens. Exploratory linear mixed and logistic regression models were employed.
RESULTS: Geometric mean of FeNO was 17.8 ppb (GSD 2.09) and 139 students (36.6%) had elevated FeNO (>20 ppb). In total, 107 students (28.2%) were sensitized to house dust mite (HDM) (Der p1 or Der f1), 4 (1.1%) to cat and 3 (0.8%) to mold (Cladosporium or Alternaria). Moreover, 20 students (5.3%) had diagnosed asthma, 38 (10.0%) had current wheeze, and 107 (28.2%) had current rhinitis. HDM sensitization, diagnosed asthma, current wheeze, and current rhinitis were associated with FeNO. In total, 281 students (73.9%) had mold or dampness, 232 (61.1%) had environmental tobacco smoke (ETS) and 43 (11.3%) had other odor at home. Indoor mold or dampness and other odor at home were associated with FeNO. ETS was negatively associated with FeNO.
CONCLUSION: HDM sensitization and elevated FeNO can be common among children in this part of Indonesia. The high prevalence of elevated FeNO indicate that undiagnosed childhood asthma is common. Dampness, mold and odor at home can be associated with increased FeNO while ETS can be associated with decreased FeNO.