Displaying all 10 publications

Abstract:
Sort:
  1. Jamalludin Z, Malik RA, Ung NM
    Phys Eng Sci Med, 2021 Sep;44(3):773-783.
    PMID: 34191272 DOI: 10.1007/s13246-021-01026-x
    Intracavitary cervical brachytherapy delivers high doses of radiation to the target tissue and a portion of these doses will also hit the rectal organs due to their close proximity. Rectal dose can be evaluated from dosimetric parameters in the treatment planning system (TPS) and in vivo (IV) dose measurement. This study analyzed the correlation between IV rectal dose with selected volume and point dose parameters from TPS. A total of 48 insertions were performed and IV dose was measured using the commercial PTW 9112 semiconductor diode probe. In 18 of 48 insertions, a single MOSkin detector was attached on the probe surface at 50 mm from the tip. Four rectal dosimetric parameters were retrospectively collected from TPS; (a) PTW 9112 diode maximum reported dose (RPmax) and MOSkin detector, (b) minimum dose to 2 cc (D2cc), (c) ICRU reference point (ICRUr), and (d) maximum dose from additional points (Rmax). The IV doses from both detectors were analyzed for correlation with these dosimetric parameters. This study found a significantly high correlation between IV measured dose from RPmax (r = 0.916) and MOSkin (r = 0.959) with TPS planned dose. The correlation between measured RPmax with both D2cc and Rmax revealed high correlation of r > 0.7, whereas moderate correlation (r = 0.525) was observed with ICRUr. There was no significant correlation between MOSkin IV measured dose with D2cc, ICRUr and Rmax. The non-significant correlation between parameters was ascribable to differences in both detector position within patients, and dosimetric volume and point location determined on TPS, rather than detector uncertainties.
  2. Jamalludin Z, Jong WL, Malik RA, Rosenfeld AB, Ung NM
    Phys Med, 2020 Jan;69:52-60.
    PMID: 31830631 DOI: 10.1016/j.ejmp.2019.11.025
    PURPOSE: Dose to the rectum during brachytherapy treatment may differ from an approved treatment plan which can be quantified with in vivo dosimetry (IVD). This study compares the planned with in vivo doses measured with MOSkin and PTW 9112 rectal probe in patients undergoing CT based HDR cervical brachytherapy with Co-60 source.

    METHODS: Dose measurement of a standard pear-shaped plan carried out in phantom to verify the MOSkin dose measurement accuracy. With MOSkin attached to the third diode, RP3 of the PTW 9112, both detectors were inserted into patients' rectum. The RP3 and MOSkin measured doses in 18 sessions as well as the maximum measured doses from PTW 9112, RPmax in 48 sessions were compared to the planned doses.

    RESULTS: Percentage dose differences ΔD (%) in phantom study for two MOSkin found to be 2.22 ± 0.07% and 2.5 ± 0.07%. IVD of 18 sessions resulted in ΔD(%) of -16.3% to 14.9% with MOSkin and ΔD(%) of -35.7% to -2.1% with RP3. In 48 sessions, RPmax recorded ΔD(%) of -37.1% to 11.0%. MOSkin_measured doses were higher in 44.4% (8/18) sessions, while RP3_measured were lower than planned doses in all sessions. RPmax_measured were lower in 87.5% of applications (42/47).

    CONCLUSIONS: The delivered doses proven to deviate from planned doses due to unavoidable shift between imaging and treatment as measured with MOSkin and PTW 9112 detectors. The integration of MOSkin on commercial PTW 9112 surface found to be feasible for rectal dose IVD during cervical HDR ICBT.

  3. Jamalludin Z, Jong WL, Ho GF, Rosenfeld AB, Ung NM
    Australas Phys Eng Sci Med, 2019 Dec;42(4):1099-1107.
    PMID: 31650362 DOI: 10.1007/s13246-019-00809-7
    The MOSkin, a metal-oxide semiconductor field-effect transistor based detector, is suitable for evaluating skin dose due to its water equivalent depth (WED) of 0.07 mm. This study evaluates doses received by target area and unavoidable normal skin during a the case of skin brachytherapy. The MOSkin was evaluated for its feasibility as detector of choice for in vivo dosimetry during skin brachytherapy. A high-dose rate Cobalt-60 brachytherapy source was administered to the tumour located at the medial aspect of the right arm, complicated with huge lymphedema thus limiting the arm motion. The source was positioned in the middle of patients' right arm with supine, hands down position. A 5 mm lead and 5 mm bolus were sandwiched between the medial aspect of the arm and lateral chest to reduce skin dose to the chest. Two calibrated MOSkin detectors were placed on the target and normal skin area for five treatment sessions for in vivo dose monitoring. The mean dose to the target area ranged between 19.9 and 21.1 Gy and was higher in comparison with the calculated dose due to contribution of backscattered dose from lead. The mean measured dose at normal skin chest area was 1.6 Gy (1.3-1.9 Gy), less than 2 Gy per fraction. Total dose in EQD2 received by chest skin was much lower than the recommended skin tolerance. The MOSkin detector presents a reliable real-time dose measurement. This study has confirmed the applicability of the MOSkin detector in monitoring skin dose during brachytherapy treatment due to its small sensitive volume and WED 0.07 mm.
  4. Yap LM, Jamalludin Z, Ng AH, Ung NM
    Phys Eng Sci Med, 2023 Sep;46(3):1331-1340.
    PMID: 37470929 DOI: 10.1007/s13246-023-01303-x
    The survey is to assess the current state of adaptive radiation therapy (ART) for head and neck (H&N) cases among radiotherapy centers in Malaysia and to identify any implementation limitations. An online questionnaire was sent to all radiotherapy centers in Malaysia. The 24-question questionnaire consists of general information about the center, ART practices, and limitations faced in implementing ART. 28 out of 36 radiotherapy centers responded, resulting in an overall response rate of 78%. About 52% of the responding centers rescanned and replanned less than 5% of their H&N patients. The majority (88.9%) of the respondents reported the use Cone Beam Computed Tomography alone or in combination with other modalities to trigger the ART process. The main reasons cited for adopting ART were weight loss, changes in the immobilization fitting, and anatomical variation. The adaptation process typically occurred during week 3 or week 4 of treatment. More than half of the respondents require three days or more from re-simulation to starting a new treatment plan. Both target and organ at risk delineation on new planning CT relied heavily on manual delineation by physicians and physicists, respectively. All centers perform patient-specific quality assurance for their new adaptive plans. Two main limitations in implementing ART are "limited financial resources or equipment" and "limitation on technical knowledge". There is a need for a common consensus to standardize the practice of ART and address these limitations to improve the implementation of ART in Malaysia.
  5. Hashim N, Jamalludin Z, Ung NM, Ho GF, Malik RA, Phua VC
    Asian Pac J Cancer Prev, 2014;15(13):5259-64.
    PMID: 25040985
    BACKGROUND: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT).

    MATERIALS AND METHODS: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6 Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose (DMax) to rectum was the highest recorded dose at one of these five points. Using the HDR plus 2.6 brachytherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded (D2cc) for all individual fractions. The mean D2cc of rectum was compared to the means of ICRU rectal point and rectal DMax using the Student's t-test. The mean D2cc of bladder was compared with the mean ICRU bladder point using the same statistical test .The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (α/β value of 10 Gy for target, 3 Gy for organs at risk).

    RESULTS: The total prescribed dose was 77.5 Gy α/β10. The mean dose to the rectum was 4.58 ± 1.22 Gy for D 2cc, 3.76 ± 0.65 Gy at D ICRU and 4.75 ± 1.01 Gy at DMax. The mean rectal D 2cc dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48 -1.19 Gy). The mean EQD2 was 68.52 ± 7.24 Gy α/β3 for D 2cc, 61.71 ± 2.77 Gy α/β3 at D ICRU and 69.24 ± 6.02 Gy α/β3 at DMax. The mean ratio of D 2cc rectum to D ICRU rectum was 1.25 and the mean ratio of D 2cc rectum to DMax rectum was 0.98 for all individual fractions. The mean dose to the bladder was 6.00 ± 1.90 Gy for D 2cc and 5.10 ± 2.03 Gy at D ICRU. However, the mean D 2cc dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25 Gy). The mean EQD2 was 81.85 ± 13.03 Gy α/β3 for D 2cc and 74.11 ± 19.39 Gy α/β3 at D ICRU. The mean ratio of D 2cc bladder to D ICRU bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose.

    CONCLUSIONS: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the D 2cc and rectal DMax for D 2cc. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the D 2cc.

  6. Jong WL, Ung NM, Vannyat A, Jamalludin Z, Rosenfeld A, Wong JH
    Phys Med, 2017 Jan;33:127-135.
    PMID: 28089106 DOI: 10.1016/j.ejmp.2016.12.020
    Dosimetry in small radiation field is challenging and complicated because of dose volume averaging and beam perturbations in a detector. We evaluated the suitability of the "Edge-on" MOSkin (MOSFET) detector in small radiation field measurement. We also tested the feasibility for dosimetric verification in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). "Edge-on" MOSkin detector was calibrated and the reproducibility and linearity were determined. Lateral dose profiles and output factors were measured using the "Edge-on" MOSkin detector, ionization chamber, SRS diode and EBT2 film. Dosimetric verification was carried out on two SRS and five SRT plans. In dose profile measurements, the "Edge-on" MOSkin measurements concurred with EBT2 film measurements. It showed full width at half maximum of the dose profile with average difference of 0.11mm and penumbral width with difference of ±0.2mm for all SRS cones as compared to EBT2 film measurement. For output factor measurements, a 1.1% difference was observed between the "Edge-on" MOSkin detector and EBT2 film for 4mm SRS cone. The "Edge-on" MOSkin detector provided reproducible measurements for dose verification in real-time. The measured doses concurred with the calculated dose for SRS (within 1%) and SRT (within 3%). A set of output correction factors for the "Edge-on" MOSkin detector for small radiation fields were derived from EBT2 film measurement and presented. This study showed that the "Edge-on" MOSkin detector is a suitable tool for dose verification in small radiation field.
  7. Rejab M, Wong JHD, Jamalludin Z, Jong WL, Malik RA, Wan Ishak WZ, et al.
    Australas Phys Eng Sci Med, 2018 Jun;41(2):475-485.
    PMID: 29756166 DOI: 10.1007/s13246-018-0647-6
    This study investigates the characteristics and application of the optically-stimulated luminescence dosimeter (OSLD) in cobalt-60 high dose rate (HDR) brachytherapy, and compares the results with the dosage produced by the treatment planning system (TPS). The OSLD characteristics comprised linearity, reproducibility, angular dependence, depth dependence, signal depletion, bleaching rate and cumulative dose measurement. A phantom verification exercise was also conducted using the Farmer ionisation chamber and in vivo diodes. The OSLD signal indicated a supralinear response (R2 = 0.9998). It exhibited a depth-independent trend after a steep dose gradient region. The signal depletion per readout was negligible (0.02%), with expected deviation for angular dependence due to off-axis sensitive volume, ranging from 1 to 16%. The residual signal of the OSLDs after 1 day bleached was within 1.5%. The accumulated and bleached OSLD signals had a standard deviation of ± 0.78 and ± 0.18 Gy, respectively. The TPS was found to underestimate the measured doses with deviations of 5% in OSLD, 17% in the Farmer ionisation chamber, and 7 and 8% for bladder and rectal diode probes. Discrepancies can be due to the positional uncertainty in the high-dose gradient. This demonstrates a slight displacement of the organ at risk near the steep dose gradient region will result in a large dose uncertainty. This justifies the importance of in vivo measurements in cobalt-60 HDR brachytherapy.
  8. Jamalludin Z, Jong WL, Abdul Malik R, Rosenfeld A, Ung NM
    Phys Med, 2019 Feb;58:1-7.
    PMID: 30824140 DOI: 10.1016/j.ejmp.2019.01.010
    In vivo dosimetry in high dose-rate (HDR) intracavitary brachytherapy (ICBT) is important for assessing the true dose received by surrounding organs at risk during treatment. It also serves as part of the treatment delivery quality assurance and verification program with the use of a suitable dosimeter. Such a dosimeter should be characterized under brachytherapy conditions before clinical application to ensure the accuracy of in vivo measurement. In this study, a MOSFET-based detector, MOSkin, was calibrated and characterized under HDR Cobalt-60 (Co-60) brachytherapy source. MOSkin possessed the major advantages of having small physical and dosimetric sizes of 4.8 × 10-6 mm3 with the ability to provide real-time measurements. Using solid water and polymethyl methacrylate (PMMA) phantom, the detectors' reproducibility, linearity, angular and distance dependency was tested for its suitability as an in vivo detector. Correction factors to account for differences in depth measurements were determined. The MOSkin detector showed a reliable response when tested under Co-60 brachytherapy range of doses with an excellent linearity of R2 = 0.9997 and acceptable reproducibility. A phantom verification study was also conducted to verify the differences between MOSkin responses and treatment planning (TPS) calculated doses. By taking into account several correction factors, deviations ranging between 0.01 and 0.4 Gy were found between MOSkin measured and TPS doses at measurement distance of 20-55 mm. The use of MOSkin as the dosimeter of choice for in vivo dosimetry under Co-60 brachytherapy condition is feasible.
  9. Zaman ZK, Ung NM, Malik RA, Ho GF, Phua VC, Jamalludin Z, et al.
    Phys Med, 2014 Dec;30(8):980-4.
    PMID: 25086486 DOI: 10.1016/j.ejmp.2014.07.002
    Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.
  10. Zahir NSM, Saad M, Alip A, Rejab M, Jamalludin Z, Hizam NDA, et al.
    Phys Eng Sci Med, 2023 Mar;46(1):405-412.
    PMID: 36806157 DOI: 10.1007/s13246-023-01230-x
    Transperineal ultrasound (TPUS) is an image-guided radiotherapy system used for tracking intrafraction prostate displacements in real time. The objectives of this study are to evaluate intrafraction prostate displacements and derive planning target volume (PTV) margins for prostate radiotherapy at our institution. The ultrasound (US) data of nine prostate cancer patients referred for VMAT radiotherapy was retrieved. Prior to beam on, patient position was set up with the US probe positioned transperineally with the aid of reference images (fused US and computed tomography images). In each fraction, prostate displacements in three directions [superior/inferior (SI), left/right (LR) and anterior/posterior (AP)] were recorded. PTV margins were determined using Van Herk's formula. To assess the prostate displacement time trend, continuous displacement data were plotted in 30-s intervals for eight minutes. The intrafraction prostate monitoring found a population mean setup error (Mp) of 0.8, 0.1, - 1.7 mm, a systematic error of (∑p) 0.7, 0.4, 0.9 mm and random error (σp) of 0.2, 0.1, 0.3 mm in SI, LR and AP directions, respectively. The PTV margin was found to be the largest in the AP direction at 2.5 mm compared with 1.9 mm and 1.1 mm for SI and LR directions, respectively. The PTV margin allowed for prostate radiotherapy at our institution was 2.5 mm in all directions. The prostate displacement time trend showed an increase in intrafraction displacements, with most patients were observed to have strong positive correlation between time and intrafraction prostate displacements in SI direction. TPUS is feasible for monitoring intrafraction displacement of the prostate and may facilitate PTV margin generation to account for such displacements during radiotherapy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links