Displaying all 2 publications

Abstract:
Sort:
  1. Ayoub R, Jarrar Q, Ali D, Moshawih S, Jarrar Y, Hakim M, et al.
    Eur J Pharm Sci, 2021 Aug 01;163:105865.
    PMID: 33979659 DOI: 10.1016/j.ejps.2021.105865
    BACKGROUND: Mefenamic acid (MFA), a commonly prescribed non-steroidal anti-inflammatory drug (NSAID), possesses a greater risk of dose-related central nervous system (CNS) toxicity than other NSAIDs. In this study, α-tocopherol and α-tocopherol acetate were selected as prodrug moieties for MFA in an attempt to reduce the CNS toxicity and enhance the therapeutic efficacy.

    METHOD: α-tocopherol monoester of MFA (TMMA) and α-tocopherol di-ester of MFA (TDMA) were synthesized by esterification reaction and were subjected to various in vivo characterizations.

    RESULTS: Masking of the carboxylate group of MFA with the proposed pro-moieties significantly (p<0.05) delayed the onset of tonic-clonic seizure in mice. Besides, the intraperitoneal administration of TMMA and TDMA in mice produced significantly (p<0.05) stronger anti-inflammatory effects in the carrageenan-induced paw edema test and greater anti-nociceptive effect in the acetic acid-induced writhing test than MFA at an equimolar dose of 20 mg/kg. Treatment with TMMA and TDMA caused a significant (p<0.05) inhibition of pain at 1st and 2nd phases of formalin-induced licking test in mice, whereas treatment with MFA inhibited the 2nd phase only. Pretreatment with naloxone and flumazenil significantly (p<0.05) reversed the anti-nociceptive effect of MFA, TMMA and TDMA in the acetic acid-induced writhing test. In addition, treatment with TMMA and TDMA caused significantly (p<0.05) a higher inhibition of pain in the glutamate-induced licking response in mice than MFA.

    CONCLUSION: Masking the carboxylate moiety of MFA by α-tocopherol and α-tocopherol acetate has a great potential for reducing CNS toxicity, enhancing the therapeutic efficacy and altering the mode of anti-nociceptive action.

  2. Jarrar Q, Ayoub R, Jarrar Y, Aburass H, Goh KW, Ardianto C, et al.
    J Integr Neurosci, 2023 Jul 26;22(4):104.
    PMID: 37519168 DOI: 10.31083/j.jin2204104
    BACKGROUND: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity.

    METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted.

    RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities.

    CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links