Displaying all 5 publications

Abstract:
Sort:
  1. Lokman IH, Ibitoye EB, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA
    Trop Anim Health Prod, 2019 Nov;51(8):2219-2225.
    PMID: 31134556 DOI: 10.1007/s11250-019-01936-9
    Majority of the studies on the effect of chitin and chitosan on growth and carcass characteristics of broiler chickens has concentrated more on shrimp chitin and shrimp chitosan, and often with contradictory results. Therefore, the objective of this present study is to evaluate and compare the effect of dietary chitin and chitosan from cricket and shrimp on growth performance, carcass, and organ characteristics of broiler chickens. One hundred fifty-day-old male Cobb500 broiler chicks of similar average weight were randomly allotted into one of the five dietary treatments with three replicates. Treatment 1 (T1) chicks were fed basal diet only (control), treatment 2 and 3 (T2 and T3) chicks were given basal diet with 0.5 g/kg diet of cricket chitin and cricket chitosan, respectively, while treatment 4 and 5 (T4 and T5) chicks were served basal diet with 0.5 g/kg diet of shrimp chitin and shrimp chitosan respectively. No significant variation occurred between cricket chitin and shrimp chitin, although data on growth performance were higher in cricket chitin, but growth performance varied significantly between cricket chitosan and shrimp chitosan. This study revealed that cricket chitin at 0.5 g/kg significantly improved growth performance, carcass quality, and organ characteristics of broilers more than chitosan. Birds fed basal diet alone, although gained more weight, also accumulated more fat having the poorest feed conversion ratio (FCR) and the highest mortality. However, carcass of birds fed cricket chitin was the leanest and thus economically beneficial as they consumed the least amount of feed with the best FCR.
  2. Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN
    Biochim Biophys Acta Gene Regul Mech, 2022 10;1865(7):194873.
    PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873
    Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
  3. Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA
    Biomed Mater, 2018 01 30;13(2):025009.
    PMID: 29182521 DOI: 10.1088/1748-605X/aa9dde
    Chitin ranks next to cellulose as the most important bio-polysaccharide which can primarily be extracted from crustacean shells. However, the emergence of new areas of the application of chitin and its derivatives are on the increase and there is growing demand for new chitin sources. In this study, therefore, an attempt was made to extract chitin from the house cricket (Brachytrupes portentosus) by a chemical method. The physicochemical properties of chitin and chitosan extracted from crickets were compared with commercial chitin and chitosan extracted from shrimps, in terms of proximate analysis in particular, of their ash and moisture content. Also, infrared spectroscopy, x-ray diffraction (XRD), scanning electron microscopy and elemental analysis were conducted. The chitin and chitosan yield of the house cricket ranges over 4.3%-7.1% and 2.4%-5.8% respectively. Chitin and chitosan from crickets compares favourably with those extracted from shrimps, and were found to exhibit some similarities. The result shows that cricket and shrimp chitin and chitosan have the same degree of acetylation and degree of deacetylation of 108.1% and 80.5% respectively, following Fourier transform infrared spectroscopy. The characteristic XRD strong/sharp peaks of 9.4 and 19.4° for α-chitin are common for both cricket and shrimp chitin. The percentage ash content of chitin and chitosan extracted from B. portentosus is 1%, which is lower than that obtained from shrimp products. Therefore, cricket chitin and chitosan can be said to be of better quality and of purer form than commercially produced chitin and chitosan from shrimp. Based on the quality of the product, chitin and chitosan isolated from B. portentosus can replace commercial chitin and chitosan in terms of utilization and applications. Therefore, B. portentosus is a promising alternative source of chitin and chitosan.
  4. Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN
    Curr Res Chem Biol, 2022;2:100021.
    PMID: 35815068 DOI: 10.1016/j.crchbi.2022.100021
    Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
  5. Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA, et al.
    Poult Sci, 2019 Feb 01;98(2):745-752.
    PMID: 30265345 DOI: 10.3382/ps/pey419
    Growth hormones (GH) alone does not explain the growth rate in the chicken as growth in an animal is multi-factorial. Normal morphology of the intestinal villus and crypt, with adequate regulation of intestinal nutrient transporters, is essential to a healthy gut. Nutrition plays a significant role in gut health management, but information on the effect of dietary chitin and chitosan on gut morphology, gene expression of nutrient transporter, and serum levels of GH in broiler chickens is scanty. Thus, this study aimed at evaluating the comparative effect of dietary chitin and chitosan from cricket and shrimp on the small intestinal morphology, relative gene expression of intestinal nutrient transporters and serum level of GH in the broiler. A total of 150 day-old male Cobb500 broiler chicks were randomly allotted to one of the five treatment groups (n = 30). Treatment 1 was fed basal diet only, treatments 2 to 5 were fed a basal diet with 0.5 g cricket chitin, cricket chitosan, shrimp chitin, and shrimp chitosan, respectively, per kg diet. At days 21 and 42, duodenal and jejunal samples were assessed for structural morphology and jejunum for the relative gene expression of PepT1, EAAT3, SGLT1, and SGLT5 using quantitative real-time PCR. Results bared that dietary cricket chitosan and shrimp chitosan significantly (P < 0.05) improved jejunal villus height and reduced crypt depth without improving the body weight (BW). The gut morphology of birds under cricket chitin was poor and significantly (P < 0.05) different from other treated groups. Both the dietary chitin and chitosan at day 21 and only dietary chitosan at day 42 significantly (P < 0.05) down-regulated the relative mRNA expression of PepT1, EAAT3, SGLT1, and SGLT5 of broiler chickens. Treated groups differ non-significantly at both phases, while cricket chitin numerically increased the relative expression of PepT1, EAAT3, and SGLT1. Therefore, the potential of cricket chitin to improve BW and to up-regulate nutrient transporters is worthy of further exploration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links