Displaying all 4 publications

Abstract:
Sort:
  1. Phipps M, Jinam T
    Tissue Antigens, 2009 Mar;73(3):279-80.
    PMID: 19144089 DOI: 10.1111/j.1399-0039.2008.01195.x
    A novel human leukocyte antigen-B allele officially named B*3589, was found in an indigenous individual of Jehai ethnicity when sequencing was performed to investigate human genome variation in a research project. B*3589 differs form B*3505 in a point mutation at codon 169 (CGC to TGC) resulting in an amino acid change from Arg to Cys.
  2. Jinam TA, Saitou N, Edo J, Mahmood A, Phipps ME
    Tissue Antigens, 2010 Feb;75(2):151-8.
    PMID: 20003135 DOI: 10.1111/j.1399-0039.2009.01417.x
    This is the first report of high-resolution human leukocyte antigen (HLA) typing in four indigenous groups in Malaysia. A total of 99 normal, healthy participants representing the Negrito (Jehai and Kensiu), Proto-Malay (Temuan) and a native group of Borneo (Bidayuh) were typed for HLA-A, -B, -DRB1 and -DQB1 genes using sequence-based typing. Eleven HLA-A, 26 HLA-B, 16 HLA-DRB1 and 14 HLA-DQB1 alleles were detected, including a new allele, HLA-B*3589 in the Jehai. Highly frequent alleles were A*2407, B*1513, B*1801, DRB1*0901, DRB1*1202, DRB1*1502, DQB1*0303 and DQB1*0502. Principal component analysis based on high-resolution HLA-A, -B and -DRB1 allele frequencies showed close affinities among all four groups, including the Negritos, with other Southeast Asian populations. These results showed the scope of HLA diversity in these indigenous minority groups and may prove beneficial for future disease association, anthropological and forensic studies.
  3. Saenz Hinojosa S, Adrian Jinam T, Hosomichi K, Romero VI
    Hum Immunol, 2024 Mar 04.
    PMID: 38443236 DOI: 10.1016/j.humimm.2024.110771
    The Waorani, an isolated indigenous tribe in Ecuador, have long been characterized by limited genetic diversity, with few studies delving into their genetic background. Human Leukocyte Antigen (HLA) genes which are located in the human major histocompatibility complex (MHC) provides valuable insights into population evolution due to its highly polymorphic nature. However, little is known about the HLA diversity and ancestry of the Waorani population. In this study, we sequenced eight HLA genes using Next Generation Sequencing (NGS) from 134 Waorani individuals and obtained up to four-field HLA allele resolution. Cluster and phylogenetic analysis show that the Waorani are genetically distant from other Ecuador populations, but instead show genetic affinities with the Puyanawa and Terena tribes from Brazil, as well as the Mixe tribe from Mexico. The identification of alleles common within the Waorani population, previously linked to specific health conditions, notably paves the way for future association analyses. This extensive study, employing Next-Generation Sequencing (NGS) technology, significantly enriches the sparse and segmented understanding of HLA diversity in the South American region. Our findings enhance the global comprehension of human genetic diversity and underscore the value of studying indigenous populations. Such research is vital for deepening our insights into human migration patterns and evolutionary processes.
  4. Aghakhanian F, Yunus Y, Naidu R, Jinam T, Manica A, Hoh BP, et al.
    Genome Biol Evol, 2015 May;7(5):1206-15.
    PMID: 25877615 DOI: 10.1093/gbe/evv065
    Indigenous populations of Malaysia known as Orang Asli (OA) show huge morphological, anthropological, and linguistic diversity. However, the genetic history of these populations remained obscure. We performed a high-density array genotyping using over 2 million single nucleotide polymorphisms in three major groups of Negrito, Senoi, and Proto-Malay. Structural analyses indicated that although all OA groups are genetically closest to East Asian (EA) populations, they are substantially distinct. We identified a genetic affinity between Andamanese and Malaysian Negritos which may suggest an ancient link between these two groups. We also showed that Senoi and Proto-Malay may be admixtures between Negrito and EA populations. Formal admixture tests provided evidence of gene flow between Austro-Asiatic-speaking OAs and populations from Southeast Asia (SEA) and South China which suggest a widespread presence of these people in SEA before Austronesian expansion. Elevated linkage disequilibrium (LD) and enriched homozygosity found in OAs reflect isolation and bottlenecks experienced. Estimates based on Ne and LD indicated that these populations diverged from East Asians during the late Pleistocene (14.5 to 8 KYA). The continuum in divergence time from Negritos to Senoi and Proto-Malay in combination with ancestral markers provides evidences of multiple waves of migration into SEA starting with the first Out-of-Africa dispersals followed by Early Train and subsequent Austronesian expansions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links