Displaying all 3 publications

Abstract:
Sort:
  1. Fatema KN, Jung CH, Liu Y, Sagadevan S, Cho KY, Oh WC
    ACS Biomater Sci Eng, 2020 12 14;6(12):6981-6994.
    PMID: 33320627 DOI: 10.1021/acsbiomaterials.0c00423
    In the present study, electrochemical sensing for urea was proposed utilizing graphene-based quaternary nanocomposites YInWO4-G-SiO2 (YIWGS). These YIWGS nanocomposites were utilized due to their exceptionally delicate determination of urea with the lowest detection limit (0.01 mM). These YIWGS composites were developed through a simple self-assembly method. From physical characterization, we found that the YIWGS composites are crystalline in nature (powdered X-ray diffraction), and Fourier transform infrared (FTIR) spectroscopy analysis provided the surface functionality and bonding. Scanning electron microscopy (SEM) studies indicated the morphology characteristics of the as-synthesized composites and the high-resolution transmission electron microscopy (HRTEM) image supported the formation of cubic or hexagonal morphology of the YIW nanocomposites. The YIWGS sensor showed a great electroanalytical sensing performance of 0.07 mM urea with a sensitivity of 0.06 mA cm-2, an expansive linear range of 0.7-1.5 mM with a linear response (R2 1/4 0.99), and an eminent reaction time of around 2 s. It also displayed a good linear response toward urea with negligible interferences from normal coinciding species in urine samples.
  2. Oh WC, Fatema KN, Liu Y, Jung CH, Sagadevan S, Biswas MRUD
    ACS Omega, 2020 Jul 21;5(28):17337-17346.
    PMID: 32715218 DOI: 10.1021/acsomega.0c01699
    In this study, we demonstrate the fabrication and characterization of a new quaternary semiconductor nanocomposite of LiCuMo2O11/graphene oxide/polypyrrole (LCMGP) via a hydrothermal method and testing of an NH3 and H2SO4 sensor operating in gaseous states at room temperature. We used X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to characterize the properties of LCMGP nanostructures. Our sensor is capable of detecting NH3 and H2SO4 and quantifying their concentration in the gas flow. These results have been confirmed by exposing the sensor to different concentrations of NH3 and H2SO4 (100-1000 ppm). The obtained results confirm the exceptional sensing properties of the graphene-polymer-combined quaternary semiconductor nanocomposite related to the oxidation-reduction process that can be used for detection, identification, and quantification purposes.
  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links