Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC.
Carboxymethyl chitin (CMChit) has the potential to be used as a solid polymer electrolyte (SPE) based on its ionic conductivity value of the order of 10-6 S·cm-1 in self-standing membranes. In controlled humidity of 65RH%, carboxymethyl chitin based membrane blended with 1-Butyl-3-methylimidazolium acetate (BMIM[Ac]) ionic liquid (IL) (40 wt%) showed a threshold value of ionic conductivity in the order of 10-4 S·cm-1 and electrochemical stability was up to 2.93 V. The effects of the relative humidity and ionic liquid weight fraction on the ionic conductivity and structural changes were investigated in detail. Furthermore, the X-ray diffraction (XRD) diffractogram indicated a clear reduction of crystallinity of the CMChit. The Field-emission scanning electron microscopy (FESEM) observation of the cross-sections confirmed the homogeneity of the prepared blend. This electrolyte was tested in symmetric cells based on Zn//SPE//Zn and showed good reversibility and potential for application in proton-conducting batteries.