1. Glucocorticosteroid may relieve bronchospasm by mediating changes in the muscarinic receptor concentration and/or its affinity. 2. Cholinergic muscarinic receptors were determined by using Scatchard's plots from radioligand binding assays of 0.13-3.2 nM [3H]quinuclidinyl benzylate binding to the membrane fraction of bronchial smooth muscle (BSM). 3. The concentration of muscarinic receptor in BSM of normal rat was 57 +/- 3 fmol mg protein and the dissociation constant was 0.07 +/- 0.02 nM. Dexamethasone and corticosterone reduced muscarinic receptor concentration to 50-60% of basal with no changes in receptor affinity. No changes were found in rat treated with deoxycorticosterone. 4. These findings suggest that glucocorticoids but not mineralocorticoid relieve bronchospasm at least partly by reducing the cholinergic hypersensitivity.
1. The effects of corticosteroid pretreatment on acetylcholine (ACH)-induced contraction of bronchial smooth muscle (BSM) were studied. 2. ACH dose-response curves for dexamethasone (DM)- and corticosterone (B)-treated but not deoxycorticosterone (DOC)-treated BSM were significantly shifted to the right; this provides evidence that glucocorticoid treatment reduced the sensitivity of BSM to ACH. 3. Morphine enhanced BSM contraction in response to ACH by 20%. DM suppressed this enhancement. 4. These findings correlated well with the reduction of muscarinic receptor numbers in BSM by glucocorticoids in our previous study. In addition, glucocorticoids reduced the sensitivity of BSM to opioids.
1. Male Sprague-Dawley rats were made either hyper- or hypothyroid with thyroxine or 4-methyl-2-thiouracil, respectively. Bronchial smooth muscle (BSM) contractility and lung cyclic adenosine 3',5'-monophosphate (cAMP) content were measured in both conditions. 2. Bronchial smooth muscle contractility was significantly weaker in hyperthyroid rats, while the BSM contractility of hypothyroid rats was the same as controls. 3. The cAMP content of hyperthyroid rat lungs was similar to controls but was decreased in hypothyroid rats. 4. These studies demonstrated that both the hyper- and hypothyroid states affect respiration, although the mechanisms involved with different for each condition.