Displaying all 2 publications

Abstract:
Sort:
  1. Arnuphapprasert A, Riana E, Ngamprasertwong T, Wangthongchaicharoen M, Soisook P, Thanee S, et al.
    PMID: 32904325 DOI: 10.1016/j.ijppaw.2020.07.010
    Malaria parasites in the phylum Apicomplexa (Order: Haemosporida) infect diverse vertebrates and invertebrate hosts. At least seven genera of haemosporidian parasites have been described to exclusively infect bats. Most of these parasites remain enigmatic with a poorly known host range. Here, we investigated 271 bats belonging to 21 species and seven families from six provinces of Thailand. Overall, 124 out of 271 bats (45.8%) were positive for haemosporidian parasites, while none had Plasmodium, based on microscopic examination of blood smears and PCR amplification. We obtained 19 distinct cytochrome b (cytb) nucleotide haplotypes of Hepatocystis from seven bat species (families: Craseonycteridae, Hipposideridae, Pteropodidae, and Rhinolophidae). Nycteria was found in four bat species (Craseonycteridae, Emballonuridae, Megadermatidae, and Pteropodidae) and Polychromophilus in two species (Emballonuridae, Vespertilionidae). Phylogenetic analysis inferred from cytb sequences placed Hepatocystis into 2 different clades. Most Hepatocystis infections were found in insectivorous bats and clustered together with a sequence from Hipposideros larvatus in Cambodia (in subclade 1a). A single sequence of Hepatocystis obtained from a frugivorous bat, Cynopterus brachyotis, was placed in the same clade with Hepatocystis from the same bat species previously reported in Malaysia (clade 2). Nycteria in these Thai bats were clearly separated from the African isolates previously reported in bats in the family Rhinolophidae. Polychromophilus murinus from Myotis siligorensis was placed in a distinct clade (clade 2) from Polychromophilus melanipherus isolated from Taphozous melanopogon (clade 1). These results confirmed that at least two distinct species of Polychromophilus are found in Thailand. Collectively, Hepatocystis presented no host specificity. Although Megaderma spasma seemed to be infected by only Nycteria, its respective parasite does not show specificity to only a single bat host. Polychromophilus murinus and P. melanipherus seem to infect a narrower host range or are somehow restricted to bats in the families Vespertilionidae and Emballonuridae, respectively.
  2. Narapakdeesakul D, Pengsakul T, Kaewparuehaschai M, Thongsahuan S, Moonmake S, Lekcharoen P, et al.
    Acta Trop, 2023 Dec;248:107030.
    PMID: 37742788 DOI: 10.1016/j.actatropica.2023.107030
    Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links