Both sexes of Brachiella malayensis n. sp. are described on the basis of specimens found in the nostrils of narrow-barred Spanish mackerel Scomberomorus commerson (Lacepède) collected off Besut, Malaysia. The female of this species closely resembles those of B. magna Kabata, 1968 and B. cybii Pillai, Prabha et Balaraman, 1982 but is distinguishable mainly by the body size and the proportions of the cephalosome, posterior processes and caudal rami. While examining the male, we noticed a systematic inconsistency in some lernaeopodid genera. The genus Brachiella Cuvier, 1830, represented by its type-species Brachiella thynni Cuvier, 1830, and two monotypic genera Charopinopsis Yamaguti, 1963 and Eobrachiella Ho et Do, 1984, represented by Charopinopsis quaternia (Wilson, 1935) and Eobrachiella elegans (Richiardi, 1880), respectively, share distinct synapomorphies in the embracing (vs. pinching) elongate male maxilliped and the female trunk with a pair of long, cylindrical ventroposterior processes (in addition to a pair of modified caudal rami), both of which are involved in their unique reproductive strategy. The latter two genera are herewith relegated to junior synonyms of Brachiella.
Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.