OBJECTIVES: We examined whether the inclusion of folic acid in weekly IFA supplements conferred any benefit on hemoglobin (Hb) concentration, anemia reduction, or iron status [ferritin and soluble transferrin receptor (sTfR)], over iron alone.
METHODS: In this secondary analysis of a randomized controlled trial in Malaysia, n = 311 nonpregnant women (18-45 y old) received 60 mg Fe with either 0, 0.4, or 2.8 mg folic acid once-weekly for 16 wk. Fasting blood was collected at baseline and 16 wk. A generalized linear model (normal distribution with identity link) was used to assess Hb concentration at 16 wk (primary outcome).
RESULTS: At baseline, 84% of women had low folate status (plasma folate 0.05). Baseline plasma folate concentration did not modify the effect of treatment on Hb concentration at 16 wk. Among all women, the risks of anemia [risk ratio (RR): 0.65; 95% CI: 0.45, 0.96; P = 0.03] and iron deficiency based on ferritin (RR: 0.30; 95% CI: 0.20, 0.44; P
OBJECTIVES: We assessed the biomarker status of riboflavin and its association with hemoglobin concentration and anemia in women living in Vancouver, Canada, and Kuala Lumpur, Malaysia.
METHODS: Healthy nonpregnant, nonbreastfeeding women (19-45 y) were recruited from Canada ( n = 206) and Malaysia (n = 210) via convenience sampling. Fasting blood was collected to assess riboflavin status [erythrocyte glutathione reductase activity coefficient (EGRac)], hematological indicators, soluble transferrin receptor (sTfR), ferritin, vitamin A, folate, and vitamin B-12 concentrations. Linear and logistic regression models were used to assess the association of riboflavin status with hemoglobin concentration and anemia.
RESULTS: EGRac (mean ± SD) values were higher, indicating poorer riboflavin status, in Malaysian compared with Canadian women (1.49 ± 0.17 compared with 1.38 ± 0.11). Likewise, riboflavin biomarker deficiency (EGRac ≥1.40) was significantly more prevalent among Malaysians than Canadians (71% compared with 40%). More Malaysian than Canadian women were anemic (hemoglobin <120 g/L; 18% compared with 7%). With use of linear regression (pooled sample; n = 416), EGRac values were negatively associated with hemoglobin concentration (r = -0.18; P
METHODS AND ANALYSIS: We will recruit non-pregnant women (n=300; 18-45 years) from Selangor, Malaysia. Women will be randomised to receive either 2.8, 0.4 or 0.0 (placebo) mg folic acid with 60 mg iron weekly for 16 weeks, followed by a 4-week washout period. The primary outcome will be erythrocyte folate concentration at 16 weeks and the mean concentration will be compared between randomised treatment groups (intention-to-treat) using a linear regression model adjusting for the baseline measure.
ETHICS AND DISSEMINATION: Ethical approval was obtained from the University of British Columbia (H18-00768) and Universiti Putra Malaysia (JKEUPM-2018-255). The results of this trial will be presented at scientific conferences and published in peer-reviewed journals.
TRIAL REGISTRATION NUMBERS: ACTRN12619000818134 and NMRR-19-119-45736.
METHODS: We conducted a three-arm double-blind efficacy trial in Malaysia. Non-pregnant women (n=331) were randomised to receive 60 mg iron and either 0, 0.4, or 2.8 mg folic acid once weekly for 16 weeks.
RESULTS: At 16 weeks, women receiving 0.4 mg and 2.8 mg folic acid per week had a higher mean RBC folate than those receiving 0 mg (mean difference (95% CI) 84 (54 to 113) and 355 (316 to 394) nmol/L, respectively). Women receiving 2.8 mg folic acid had a 271 (234 to 309) nmol/L greater mean RBC folate than those receiving 0.4 mg. Moreover, women in the 2.8 mg group were seven times (RR 7.3, 95% CI 3.9 to 13.7; p<0.0001) more likely to achieve an RBC folate >748 nmol/L, a concentration associated with a low risk of NTD, compared with the 0.4 mg group.
CONCLUSION: Weekly IFA supplements containing 2.8 mg folic acid increases RBC folate more than those containing 0.4 mg. Increased availability and access to the 2.8 mg formulation is needed.
TRAIL REGISTRATION NUMBER: This trial is registered with the Australian New Zealand Clinical Trial Registry (ACTRN12619000818134).