Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency.
Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%.
Low bioavailability and poor water solubility have limited the utilization of curcumin in conventional dosing methods. As an alternative, microemulsions as drug carrier can improve curcumin delivery. A cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC)-based microemulsion was developed and its potential use as a topical delivery method for curcumin was investigated. The effect of microemulsion's particle size and its microstructure as well as the presence of the CTAB-NCC nanoparticle on the topical delivery of curcumin was studied. In vitro permeation studies showed higher penetration rate of curcumin from the oil-in-water type-microemulsions. The skin permeation profile of curcumin followed Higuchi release kinetics. Furthermore, use of the (CTAB-NCC)-based microemulsion enhanced curcumin accumulation in the skin and these system showed non cytotoxicity effect on L929 cell line. These results showed the potential of (CTAB-NCC)-based microemulsions as controlled-release topical systems for the delivery of curcumin and potentially other lipophilic drugs.
A new method was developed for the efficient spectrophotometric determination of methylene blue (MB) dye in solutions. The method is based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes (as an adsorbent). Cu(OH)2 nanoflakes were synthesized by facile and fast methods and characterized using various techniques. The developed method is based on the adsorption of MB on the Cu(OH)2 nanoflakes and transfer into a surfactant-rich phase using Triton X-114 as a nonionic surfactant. Subsequently, MB dye is desorbed from Cu(OH)2 nanoflakes using a mixture of nitric acid and methanol solution and determined by UV-Vis spectrophotometry. The effects of pH, amount of Cu(OH)2 nanoflakes, volume (concentration of Triton X-114), and temperature were investigated by designing experiments using response surface methodology (RSM). A quadratic model was utilized to predict the variables. Analysis of variance (ANOVA) was applied for the analysis of variables and their interactions, and optimal conditions were established. The results demonstrated logical agreement between experimental and predicted values of the response owing to high F value, low P value, and low lack-of-fit. The calibration graph was linear in the range of 2.0-350.0 μg L-1 of MB dye with a correlation coefficient (R) of 0.9996. The limits of detection and quantification were found to be 0.65 and 2.05 μg L-1, respectively. The developed method was successfully applied to different water samples, thereby confirming the applicability of the approach. Graphical Abstract Proposed procedure.
Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.
In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.