Growth improvement of the medicinal plant, Ficus deltoidea (Mas Cotek) under drought conditions is a vital issue in Malaysia since it is a slow-growing plant and disposed to leaf damage under the stresses of drought. Therefore, investigation was done to examine the outcomes of hydrogen peroxide (H2O2) application on Rubisco gene expression and metabolites accumulation of stressed F. deltoidea plants, and thereby to record the changes in leaf histology, photosynthesis, biochemical properties, and the growth of the plant. H2O2 at the rates of 0, 5, 10, 15, and 20 mM were foliar sprayed biweekly on the drought stressed plants using a hand sprayer. The application of 20 mM H2O2 amplified leaf number, tallness, stomatal conductance, and photosynthetic yield by 143, 24, 88, and 18%, respectively, over the control plant. A reduced transpiration rate and improved chlorophyll fluorescence were also noted in H2O2-treated plants. The treatment produced a greater amount of chlorophyll a, total phenols, total flavonoids, sugar content, and antioxidant activities by 1.61-, 1.30-, 1.98-, 1.92-, and 1.53-fold, respectively. Application of 15 mM H2O2 enhanced net photosynthetic rate and internal CO2 concentrations by 1.05- and 1.25-fold, respectively. Additionally, H2O2 treatments promoted stomatal closure, increased stomata size, the number of stomata, improved vein structure, and reduced the damage of the leaf margin and mesophyll cells of drought stressed plants. The application of H2O2 also accumulated significantly higher contents of sodium (Na+), calcium (Ca2+), potassium (K+), magnesium (Mg+), and iron (Fe2+) in stressed plants. Although the amount of Arsenic (As+) and Antimony (Sb3+) increased to some extent, the increases were not at a toxic level. The use of H2O2 enhanced the Rubisco gene expression to a greater level and the ratio of Rubisco expression increased up to 16-fold. Finally, thirteen (13) identified and five (5) unmatched volatile compounds with a quality score above 70% were identified by gas chromatography-mass spectrometry (GCMS). The GCMS analysis showed that the foliar application of H2O2 accumulates a higher percentage of volatile components in plants which helps to mitigate the negative effects of drought stress. It is concluded that under drought stressed conditions the F. deltoidea plants should be treated with 10-15 mM of H2O2 twice a week to improve leaf histology, photosynthesis, the level of Rubisco gene expression and volatile compounds accumulation, and plant growth and development.
This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.