Displaying all 2 publications

Abstract:
Sort:
  1. Ihara H, Kasamatsu S, Kitamura A, Nishimura A, Tsutsuki H, Ida T, et al.
    Chem Res Toxicol, 2017 09 18;30(9):1673-1684.
    PMID: 28837763 DOI: 10.1021/acs.chemrestox.7b00120
    Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.
  2. Cheah PS, Prabhakar S, Yellen D, Beauchamp RL, Zhang X, Kasamatsu S, et al.
    Sci Adv, 2021 Jan;7(2).
    PMID: 33523984 DOI: 10.1126/sciadv.abb1703
    Tuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs. Gene therapy was evaluated in a mouse model of TSC2 using an adeno-associated virus (AAV) vector carrying the complementary for a "condensed" form of human tuberin (cTuberin). Functionality of cTuberin was verified in culture. A mouse model of TSC2 was generated by AAV-Cre recombinase disruption of Tsc2-floxed alleles at birth, leading to a shortened lifespan (mean 58 days) and brain pathology consistent with TSC. When these mice were injected intravenously on day 21 with AAV9-cTuberin, the mean survival was extended to 462 days with reduction in brain pathology. This demonstrates the potential of treating life-threatening TSC2 lesions with a single intravenous injection of AAV9-cTuberin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links