Displaying 1 publication

Abstract:
Sort:
  1. Katiyar SA, Lee LY, Iida F, Nurzaman SG
    Soft Robot, 2023 Apr;10(2):365-379.
    PMID: 36301203 DOI: 10.1089/soro.2021.0138
    Robots primarily made of soft and elastic materials have potential applications such as traveling in confined spaces due to their adaptive morphology. However, their energy efficiency is still subject to improvement. Although a possible approach to increase efficiency is by harvesting the energy used during their behavioral motion, it is not trivial to do so due to their complex dynamics. This work seeks to pioneer a study that exploits the tight coupling between a robot's adaptive morphology, control, and consequent behaviors to harvest energy and increase energy efficiency. It is hypothesized that since varying the robot's morphology may change the energy use that leads to contrasting behavior and efficiency, harvesting the robot's energy will need to be adapted to its morphology. To verify the hypothesis, we developed a shape-changing robot with an elastic structure that achieves locomotion via vibration controlled by a single motor, such that the complex dynamics of the robot can be characterized through its resonance frequencies. It will be shown that harvesting energy at opportune occasions is more important than maximizing the harvest capacity to increase energy efficiency. We will also show how the robot's shape affects energy use in locomotion and how energy harvesting will feedback additional energy that increases the magnitude and affects the robot's behavior. We conclude with an understanding of the role of the robot's morphology, that is, shape, in using the energy provided to the robot and how the understanding can be used to harvest the robot's energy to increase its efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links