Displaying all 2 publications

Abstract:
Sort:
  1. Anees MT, Abu Bakar AFB, Khan MMA, Akhtar N, Khan MR, Khan MS
    Environ Geochem Health, 2025 Jan 06;47(2):42.
    PMID: 39760768 DOI: 10.1007/s10653-024-02347-y
    The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values. Contamination indexes suggest that Cd, As, Ni, and Ag were highly contaminated, and moderate to extremely enriched near the Kuantan Port. However, these heavy metal concentrations are lower compared to previous studies in the region. Sediment quality guidelines highlighted the occasional presence of Cd and Ag. Based on Pearson's correlation analysis, PCA, and cluster analysis, sources of these heavy metals in beach sediments were likely from agricultural runoff, uncontrolled industrial and residential discharge, and unprotected mine waste near the Kuantan Port. Furthermore, effective management of mining practices and ongoing monitoring are essential to reduce contamination risks.
  2. Devi NM, Nagarajan S, Singh CB, Khan MMA, Khan A, Khan N, et al.
    Chem Biodivers, 2024 Jun;21(6):e202300970.
    PMID: 37715949 DOI: 10.1002/cbdv.202300970
    BACKGROUND: Alpinia calcarata (AC) Roscoe of Zingiberaceae popularly known as lesser galangal has a widespread occurrence in China, India, Sri-Lanka, Bangladesh, Malaysia, Indonesia and Thailand. Essential oil (Eoil) was obtained from leaves/rhizomes of AC via hydro-distillation process.

    METHODS: To identify chemical ingredients in oil from leaves/rhizomes of AC through GC/MS technique for volatile components and their anti-oxidant, inflammatory/diabetic activities.

    RESULTS: The 38 and 65 components were found to make up 99.9 and 99.6 %, respectively in total of Eoil composition of AC leaves/rhizomes. Key chemical constituents were eucalyptol (28.7 % in leaves; 25.4 % in rhizomes), camphor (12.8 % in leaves; 4.2 % in rhizomes), and carotol (9.8 % in leaves; 5.6 % in rhizomes) found in oil of AC leaves/rhizomes. Colorimetric assay showed anti-oxidant activities in leaves and rhizomes are IC50=71.01±0.71 μg/mL and IC50=73.83±0.49 μg/mL, respectively in the Eoils. Eoils had high anti-oxidant capabilities in IC50-values of AC-L-Eoil=43.09±0.82&AC-Rh-Eoil=68.11±0.87 in reducing power in μg/mL was found. Albumin test of rhizome oil had IC50-values of 15.19±0.25 μg/mL. Concentrations range of 7.81 μg/mL and 250 μg/mL in the Eoils of AC leaves and rhizome, respectively by α-glucosidase inhibition assay.

    CONCLUSION: Our findings demonstrated that leaf oil was slightly more promising results than rhizome oil of AC extract, which was ultimately showed medicinal potential of secondary metabolites with anti-oxidant, diabetic/inflammatory activities. Further, Eoils of AC have a wide range of pharmacological potential and promising anti-diabetic effects.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links