Displaying all 4 publications

Abstract:
Sort:
  1. Yusof F, Khanahmadi S, Amid A, Mahmod SS
    Springerplus, 2016;5:57.
    PMID: 26904389 DOI: 10.1186/s40064-015-1621-3
    Cocoa pod husk (CPH) is a by-product of cocoa production obtained after removing the beans from the fruit. The analysis of CPH has shown that it contains high amounts of protein. This study is aimed to utilize this protein source in hydrolase enzyme production. In this study, seven hydrolase enzymes (amylase, fructosyltransferase, mannanase, glucosidase, glucanase, lipase and protease) were screened from CPH for the first time for feasible industrial production. Among these hydrolases, lipase was chosen for the next steps of experiments as it has a lot of applications in different industries. The extraction of high active lipase from CPH has been done under optimum conditions. The condition that was optimum for the three major factors was achieved using Face centered central composite design (FCCCD) with response surface methodology (RSM) to obtain the highest enzyme activity of crude lipase from CPH. The optimum condition of extraction is used for preparation of cross-linked enzyme aggregate (CLEA). For the production of immobilized biocatalyst, the technique of CLEA is considered as an effective technique for its industrially attractive advantages. Referring to the results of OFAT, CLEA-lipase was prepared in the best condition at the presence of 30 mM ammonium sulphate, 70 mM glutaraldehyde with 0.23 mM Bovine serum albumin as an additive. Immobilization effectively improved the stability of lipase against various organic solvents.
  2. Khanahmadi S, Yusof F, Amid A, Mahmod SS, Mahat MK
    J Biotechnol, 2015 May 20;202:153-61.
    PMID: 25481099 DOI: 10.1016/j.jbiotec.2014.11.015
    Cross-linked enzyme aggregate (CLEA) is easily prepared from crude enzyme and has many advantages to the environment and it is considered as an economic method in the context of industrial biocatalysis compared to free enzyme. In this work, a highly active and stable CLEA-lipase from cocoa pod husk (CPH) which is a by-product after removal of cocoa beans, were assayed for their hydrolytic activity and characterized under the optimum condition successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of the three significant factors (concentration of ammonium sulfate, concentration of glutaraldehyde and concentration of additive) to achieve higher enzyme activity of CLEA. From 20 runs, the highest activity recorded was around 9.407U (83% recovered activity) under the condition of using 20% saturated ammonium sulfate, 60mM glutaraldehyde as cross-linker and 0.17mM bovine serum albumin as feeder. Moreover, the optimal reaction temperature and pH value in enzymatic reaction for both crude enzyme and immobilized were found to be 45°C at pH 8 and 60°C at pH 8.2, respectively. A systematic study of the stability of CLEA and crude enzyme was taken with regards to temperature (25-60°C) and pH (5-10) value and in both factors, CLEA-lipase showed more stability than free lipase. The Km value of CLEA was higher compared to free enzyme (0.55mM vs. 0.08mM). The CLEA retained more than 60% of the initial activity after six cycles of reuse compared to free enzyme. The high stability and recyclability of CLEA-lipase from CPH make it efficient for different industrial applications.
  3. Khanahmadi S, Yusof F, Chyuan Ong H, Amid A, Shah H
    J Biotechnol, 2016 Aug 10;231:95-105.
    PMID: 27184429 DOI: 10.1016/j.jbiotec.2016.05.015
    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.
  4. Rafieerad AR, Bushroa AR, Nasiri-Tabrizi B, Kaboli SHA, Khanahmadi S, Amiri A, et al.
    J Mech Behav Biomed Mater, 2017 May;69:1-18.
    PMID: 28027481 DOI: 10.1016/j.jmbbm.2016.11.019
    Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO2-Nb2O5-Al2O3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links