Infectious bronchitis virus (IBV) is one of the major poultry pathogens of global importance. However, the prevalence of IBV strains in Malaysia is poorly characterized. The partial genomic sequences (6.8 kb) comprising the S-3a/3b-E-M-intergenic region-5a/5b-N gene order of 11 Malaysian IBVs isolated in 2014 and 2015 were sequenced using next-generation sequencing technology. Phylogenetic and pairwise sequence comparison analysis showed that the isolated IBVs are divided into two groups. Group 1 (IBS124/2015, IBS125/2015, IBS126/2015, IBS130/2015, IBS131/2015, IBS138/2015, and IBS142/2015) shared 90%-95% nucleotide and deduced amino acid similarities to the QX-like strain. Among these isolates, IBS142/2015 is the first IBV detected in Sarawak state located in East Malaysia (Borneo Island). Meanwhile, IBV isolates in Group 2 (IBS037A/2015, IBS037B/2015, IBS051/2015, and IBS180/2015) were 91.62% and 89.09% identical to Malaysian variant strain MH5365/95 (EU086600) at nucleotide and amino acid levels, respectively. In addition, all studied IBVs were distinctly separate from Massachusetts (70%-72% amino acid similarity) and European strains including 793/B, Italy-02, and D274 (68%-73% amino acid similarity). Viruses in Group 1 have the insertion of three amino acids at positions 23, 121, and 122 of the S1 protein and recombinant events detected at nucleotide position 4354-5864, with major parental sequence derived from QX-like (CK-CH-IBYZ-2011) and a minor parental sequence derived from Massachusetts vaccine strain (H120). This study demonstrated coexistence of the IBV Malaysian variant strain along with the QX-like strain in Malaysia.
Very virulent infectious bursal disease virus (vvIBDV) targets B lymphocytes in the bursa of Fabricius (BF), causing immunosuppression and increased mortality rates in young birds. There have been few studies on the host immune response following vvIBDV infection at different inoculum doses in chickens with different genetic backgrounds. In this study, we characterized the immune responses of specific-pathogen-free (SPF) chickens and Malaysian red jungle fowl following infection with vvIBDV strain UPM0081 at 103.8 and 106.8 times the 50% embryo infectious dose (EID50). The viral burden, histopathological changes, immune cell populations, and expression of immune-related genes were measured and compared between infected and uninfected bursa at specific intervals. The populations of KUL1+, CD3+CD4+ and CD3+CD8+ cells were significantly increased in both types of chickens at 3 dpi, and there was significant early depletion of IgM+ B cells at 1 dpi in the red jungle fowl. vvIBDV infection also induced differential expression of genes that are involved in Th1 and pro-inflammatory responses, with groups receiving the higher dose (106.8 EID50) showing earlier expression of IFNG, IL12B, IL15, IL6, CXCLi2, IL28B, and TLR3 at 1 dpi. Although both chicken types showed equal susceptibility to infection, the red jungle fowl were clinically healthier than the SPF chickens despite showing more depletion of IgM+ B cells and failure to induce IFNB activation. In conclusion, high-dose vvIBDV infection caused an intense early host immune response in the infected bursa, with depletion of IgM+ B cells, bursal lesions, and cytokine expression as a response to mitigate the severity of the infection.
Infectious bronchitis viruses (IBVs) circulating in Malaysia are classified into two groups as Malaysian QX-like and variant strains. In this study, the pathogenicity of IBS130/2015 (QX-like) and IBS037A/2014 (variant) IBVs in 1-day-old and 30-day-old specific pathogen free (SPF) chickens was characterized. Both strains caused respiratory and kidney infections based on immunohistochemistry (IHC), real-time quantitative polymerase chain reaction (qPCR) and a ciliostasis study; however, the results showed that the QX-like strain was more pathogenic, caused higher mortality and showed higher tissue tropism for the kidney than the variant strain. In contrast, despite causing low or no mortality depending on the age of the infected chickens, the Malaysian variant strain showed high tissue tropism for the respiratory tract compared with the QX-like strain. IHC and qPCR indicated the presence of both IBV strains in the epithelial lining of villi in the jejunum and the caecal tonsil; however, no pathological changes were detected in these organs. Both the Malaysian QX-like and variant IBV strains are able to infect the respiratory tract and kidney of chickens irrespective of age.