Displaying all 3 publications

Abstract:
Sort:
  1. Khanum R, Thevanayagam H
    Asian J Pharm Sci, 2017 Sep;12(5):401-411.
    PMID: 32104352 DOI: 10.1016/j.ajps.2017.05.003
    Pharmaceutical delivery systems are developed to improve the physicochemical properties of therapeutic compounds. Emulsions are one of these drug delivering systems formulated using water, oils and lipids as main ingredients. Extensive data are usually generated on the physical and chemical characteristics of these oil-in-water and lipid emulsions. However, the oxidative tendency of emulsions is often overlooked. Oxidation impacts the overall quality and safety of these pharmaceutical emulsions. Additionally, introducing oxidatively unstable emulsions into biological systems further promotes oxidation in situ. Products of these reactions then continue to pose serious harm to cells and fuel other physiological oxidation reactions. Consequently, the increase of oxidation products leads to oxidative damage to biological systems. Thus, emulsions with lower lipid peroxidation are more stable and will reduce the negative effects of oxidation in situ. Preventive measures during the formulation of emulsions are important. Many naturally occurring and cost effective substances possess low oxidation tendencies and confer oxidative protection when used in emulsions. Additionally, certain preparatory methods should be employed to reduce or better control lipid peroxidation. Finally, emulsions must be evaluated for their oxidation susceptibility using the various techniques available. Careful attention to the preparation of emulsions and assessment of their oxidative stability will help produce safer emulsions without compromising efficacy.
  2. Chung PY, Khanum R
    J Microbiol Immunol Infect, 2017 Aug;50(4):405-410.
    PMID: 28690026 DOI: 10.1016/j.jmii.2016.12.005
    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed.
  3. Khanum R, Chung PY, Clarke SC, Chin BY
    Can J Microbiol, 2023 Feb 01;69(2):117-122.
    PMID: 36265186 DOI: 10.1139/cjm-2022-0135
    Lactoferrin is an innate glycoprotein with broad antibacterial and antibiofilm properties. The autonomous antibiofilm activity of lactoferrin against Gram-positive bacteria is postulated to involve the cell wall and biofilm components. Thus, the prevention of biomass formation and eradication of preformed biofilms by lactoferrin was investigated using a methicillin-resistant Staphylococcus epidermidis (MRSE) strain. Additionally, the ability of lactoferrin to modulate the expression of the biofilm-associated protein gene (bap) was studied. The bap gene regulates the production of biofilm-associated proteins responsible for bacterial adhesion and aggregation. In the in vitro biofilm assays, lactoferrin prevented biofilm formation and eradicated established biofilms for up to 24 and 72 h, respectively. Extensive eradication of MRSE biofilm biomass was accompanied by the significant upregulation of bap gene expression. These data suggest the interaction of lactoferrin with the biofilm components and cell wall of MRSE, including the biofilm-associated protein.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links