Displaying 1 publication

Abstract:
Sort:
  1. Song Z, Li Y, Tian Q, Sun C, Liu H, Chong K, et al.
    Int J Surg, 2025 Feb 24.
    PMID: 39998510 DOI: 10.1097/JS9.0000000000002308
    HYPOTHESIS: This study hypothesized that augmented reality (AR) technology has comparable accuracy and safety to conventional CT localization in guiding percutaneous transthoracic lung puncture (PTLP) to localize small pulmonary nodules.

    METHODS: This study was a prospective, non-inferiority randomized clinical trial. Patients were randomly assigned between 23 May 2023, and 26 September 2023. Patients with small peripheral lung nodules (≤2 cm) were recruited.Patients were randomly assigned to either the CT-guided PTLP group or the AR-guided PTLP group, with a 1:1 allocation ratio. The primary outcome was the accuracy of lung nodule localization measured by localization error. The secondary outcomes included procedure duration, radiation exposure dosage and complications.

    RESULTS: A total of 70 patients underwent either CT- or AR-guided lung nodule localization and subsequent surgeries. Localization error was smaller in the AR-guided group than in the CT-guided group (mean ± SD, 3.1 ± 4.0 mm vs. 5.4 ± 4.2 mm, P = 0.026). The mean difference of localization errors was -2.3 mm (95% CI: - 4.2 to -0.3 mm, P < 0.001 for non-inferiority). Compared to the CT-guided group, the AR-guided group demonstrated significantly lower radiation exposure (mean ± SD, 421 ± 168 vs. 694 ± 229 mGy × cm, P < 0.001) and shorter localization procedure duration (mean ± SD, 8.8 ± 2.3 vs. 14.1 ± 1.8 minutes, P < 0.001), with no statistical difference in complications.

    CONCLUSIONS: The accuracy of the AR-guided approach is comparable to that of the CT-guided approach in localizing small lung nodules. Furthermore, the utilization of AR technology has been demonstrated to reduce procedural time and minimize radiation exposure for patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links