Displaying all 2 publications

Abstract:
Sort:
  1. Akita H, Kimura Z, Mohd Yusoff MZ, Nakashima N, Hoshino T
    Springerplus, 2016;5:596.
    PMID: 27247892 DOI: 10.1186/s40064-016-2237-y
    Microbial degradation of lignin releases fermentable sugars, effective utilization of which could support biofuel production from lignocellulosic biomass. In the present study, a lignin-degrading bacterium was isolated from leaf soil and identified as Burkholderia sp. based on 16S rRNA gene sequencing. This strain was named CCA53, and its lignin-degrading capability was assessed by observing its growth on medium containing alkali lignin or lignin-associated aromatic monomers as the sole carbon source. Alkali lignin and at least eight lignin-associated aromatic monomers supported growth of this strain, and the most effective utilization was observed for p-hydroxybenzene monomers. These findings indicate that Burkholderia sp. strain CCA53 has fragmentary activity for lignin degradation.
  2. Akita H, Kimura Z, Yusoff MZ, Nakashima N, Hoshino T
    Genome Announc, 2016;4(4).
    PMID: 27389268 DOI: 10.1128/genomeA.00630-16
    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links