OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.
SEARCH METHODS: We searched the Cochrane Oral Health Group's Trials Register (whole database, to 3 July 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2015, Issue 6), MEDLINE via OVID (1946 to 3 July 2015), EMBASE via OVID (1980 to 3 July 2015), US National Institutes of Health Trials Registry (http://clinicaltrials.gov) (whole database, to 3 July 2015) and the World Health Organization (WHO) International Clinical Trials Registry Platform (http://www.who.int/ictrp/en/) (whole database, to 3 July 2015). We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).
SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.
MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.
AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.
OBJECTIVES: To evaluate the effects of home-based tooth whitening products with chemical bleaching action, dispensed by a dentist or over-the-counter.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 12 June 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library (searched 12 June 2018), MEDLINE Ovid (1946 to 12 June 2018), and Embase Ovid (1980 to 12 June 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (12 June 2018) and the World Health Organization International Clinical Trials Registry Platform (12 June 2018) were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included in our review randomised controlled trials (RCTs) which involved adults who were 18 years and above, and compared dentist-dispensed or over-the-counter tooth whitening (bleaching) products with placebo or other comparable products.Quasi-randomised trials, combination of in-office and home-based treatments, and home-based products having physical removal of stains were excluded.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two pairs of review authors independently extracted data and assessed risk of bias. We estimated risk ratios (RRs) for dichotomous data, and mean differences (MDs) or standardised mean difference (SMD) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.
MAIN RESULTS: We included 71 trials in the review with 26 studies (1398 participants) comparing a bleaching agent to placebo and 51 studies (2382 participants) comparing a bleaching agent to another bleaching agent. Two studies were at low overall risk of bias; two at high overall risk of bias; and the remaining 67 at unclear overall risk of bias.The bleaching agents (carbamide peroxide (CP) gel in tray, hydrogen peroxide (HP) gel in tray, HP strips, CP paint-on gel, HP paint-on gel, sodium hexametaphosphate (SHMP) chewing gum, sodium tripolyphosphate (STPP) chewing gum, and HP mouthwash) at different concentrations with varying application times whitened teeth compared to placebo over a short time period (from 2 weeks to 6 months), however the certainty of the evidence is low to very low.In trials comparing one bleaching agent to another, concentrations, application method and application times, and duration of use varied widely. Most of the comparisons were reported in single trials with small sample sizes and event rates and certainty of the evidence was assessed as low to very low. Therefore the evidence currently available is insufficient to draw reliable conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use.Tooth sensitivity and oral irritation were the most common side effects which were more prevalent with higher concentrations of active agents though the effects were mild and transient. Tooth whitening did not have any effect on oral health-related quality of life.
AUTHORS' CONCLUSIONS: We found low to very low-certainty evidence over short time periods to support the effectiveness of home-based chemically-induced bleaching methods compared to placebo for all the outcomes tested.We were unable to draw any conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use, as the overall evidence generated was of very low certainty. Well-planned RCTs need to be conducted by standardising methods of application, concentrations, application times, and duration of treatment.
OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.
SEARCH METHODS: We searched the following electronic databases: The Cochrane Oral Health Group Trials Register (to 22 March 2016); The Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library 2016, Issue 2); MEDLINE via OVID (1946 to 22 March 2016); CINAHL via EBSCO (1937 to 22 March 2016). Due to the ongoing Cochrane project to search EMBASE and add retrieved clinical trials to CENTRAL, we searched only the last 11 months of EMBASE via OVID (1 May 2015 to 22 March 2016). We placed no further restrictions on the language or date of publication. We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov), and the WHO Clinical Trials Registry Platform for ongoing trials (http://apps.who.int/trialsearch/default.aspx). We also checked the reference lists of excluded trials.
SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.
DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.
MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.
AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).
OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 23 May 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 4), MEDLINE Ovid (1946 to 23 May 2018), and Embase Ovid (1980 to 23 May 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).
SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.
MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.
AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.
OBJECTIVES: To assess the effects of pharmacological and non-pharmacological interventions for the management of gagging in people undergoing dental treatment.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the Cochrane Oral Health's Trials Register (to 18 March 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 2) in the Cochrane Library (searched 18 March 2019), MEDLINE Ovid (1946 to 18 March 2019), Embase Ovid (1980 to 18 March 2019), CINAHL EBSCO (1937 to 18 March 2019), AMED Ovid (1985 to 18 March 2019), and the proceedings of the International Association for Dental Research (IADR) online (2001 to 18 March 2019). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We also conducted forwards citation searching on the included studies via Google Scholar. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included randomised controlled trials (RCTs), involving people who were given a pharmacological or non-pharmacological intervention to manage gagging that interfered with dental treatment. We excluded quasi-RCTs. We excluded trials with participants who had central or peripheral nervous system disorders, who had oral lesions or were on systemic medications that might affect the gag sensation, or had undergone surgery which might alter anatomy permanently.
DATA COLLECTION AND ANALYSIS: We independently selected trials, extracted data, and assessed risk of bias. We followed Cochrane's statistical guidelines. We assessed the overall certainty of the evidence using GRADE.
MAIN RESULTS: We included four trials at unclear risk of bias with 328 participants (263 adults and 65 children who were four years or older), in which one trial compared acupuncture and acupressure (with thumb, device and sea band) at P6 (point located three-finger breadths below the wrist on the inner forearm in between the two tendons) to sham acupuncture and acupressure with and without sedation. One trial compared acupuncture at P6 point to sham acupuncture. These trials reported both completion of dental procedure and reduction in gagging (assessor and patient reported) as their outcomes. One cross-over and one split-mouth trial studied the effect of laser at P6 point compared to control. One trial reported reduction in gagging and another reported presence or absence of gagging during dental procedure. Acupuncture at P6 showed uncertain evidence regarding the successful completion of dental procedure (RR 1.78, 95% CI 1.05 to 3.01; two trials, 59 participants; very low-certainty evidence) and uncertain evidence regarding the reduction in gagging (RR 2.57, 95% CI 1.12 to 5.89; one trial, 26 participants; very low-certainty evidence) in comparison to sham acupuncture. Acupuncture at P6 with sedation did not show any difference when compared to sham acupuncture with sedation (RR 1.08, 95% CI 0.91 to 1.28; one trial, 34 participants; very low-certainty evidence). Acupressure using thumb pressure with or without sedation showed no clear difference in completing dental procedure (RR 0.96, 95% CI 0.84 to 1.10; one trial, 39 participants; very low-certainty evidence; and RR 0.85, 95% CI 0.50 to 1.46; one trial, 30 participants; very low-certainty evidence; respectively), or reduction in gagging (RR 1.06, 95% CI 0.92 to 1.23; one trial, 39 participants; very low-certainty evidence; and RR 0.92, 95% CI 0.60 to 1.41; one trial, 30 participants; very low-certainty evidence; respectively) when compared to sham acupressure with or without sedation. Acupressure at P6 with device showed uncertain evidence regarding the successful completion of dental procedure (RR 2.63, 95% CI 1.33 to 5.18; one trial, 34 participants; very low-certainty evidence) and uncertain evidence regarding the reduction in gagging (RR 3.94, 95% CI 1.63 to 9.53; one trial, 34 participants; very low-certainty evidence) when compared to sham acupressure. However, device combined with sedation showed no difference for either outcome (RR 1.16, 95% CI 0.90 to 1.48; one trial, 27 participants; very low-certainty evidence; and RR 1.26, 95% CI 0.93 to 1.69; one trial, 27 participants; very low-certainty evidence; respectively). Acupressure using a sea band with or without sedation showed no clear difference in completing dental procedure (RR 0.88, 95% CI 0.67 to 1.17; one trial, 21 participants; very low-certainty evidence; and RR 1.80, 95% CI 0.63 to 5.16; one trial, 19 participants; very low-certainty evidence; respectively), or reduction in gagging (RR 0.88, 95% CI 0.67 to 1.17; one trial, 21 participants; very low-certainty evidence; and RR 2.70, 95% CI 0.72 to 10.14; one trial, 19 participants; very low-certainty evidence; respectively) when compared to sham acupressure with or without sedation. Laser at P6 showed a difference in absence of gagging (odds ratio (OR) 86.33, 95% CI 29.41 to 253.45; one trial, 40 participants; very low-certainty evidence) and reduction in gagging (MD 1.80, 95% CI 1.53 to 2.07; one trial, 25 participants; very low-certainty evidence) during dental procedure when compared to dummy laser application. No noteworthy adverse effects were reported. For acupuncture at P6, the trial authors were unsure whether the reported adverse effects were due to participant anxiety or due to the intervention. None of the trials on acupressure or laser reported on this outcome. We did not find trials evaluating any other interventions used to manage gagging in people undergoing dental treatment.
AUTHORS' CONCLUSIONS: We found very low-certainty evidence from four trials that was insufficient to conclude if there is any benefit of acupuncture, acupressure or laser at P6 point in reducing gagging and allowing successful completion of dental procedures. We did not find any evidence on any other interventions for managing the gag reflex during dental treatment. More well-designed and well-reported trials evaluating different interventions are needed.
OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 24 January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 12), MEDLINE Ovid (1946 to 24 January 2018), Embase Ovid (1 May 2015 to 24 January 2018) and CINAHL EBSCO (1937 to 24 January 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We searched the reference lists of relevant systematic reviews.
SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.
DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.
MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.
AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).