Displaying all 4 publications

Abstract:
Sort:
  1. Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA
    Minerva Anestesiol, 2012 Jan;78(1):94-104.
    PMID: 21730935
    Beta-lactam antibiotics display time-dependant pharmacodynamics whereby constant antibiotic concentrations rather than high peak concentrations are most likely to result in effective treatment of infections caused by susceptible bacteria. Continuous administration has been suggested as an alternative strategy, to conventional intermittent dosing, to optimise beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) properties. With the availability of emerging data, we elected to systematically investigate the published literature describing the comparative PK/PD and clinical outcomes of beta-lactam antibiotics administered by continuous or intermittent infusion. We found that the studies have been performed in various patient populations including critically ill, cancer and cystic fibrosis patients. Available in vitro PK/PD data conclusively support the administration of beta-lactams via continuous infusion for maximizing bacterial killing from consistent attainment of pharmacodynamic end-points. In addition, clinical outcome data supports equivalence, even with the use of a lower dose by continuous infusion. However, the present clinical data is limited with small sample sizes common with insufficient power to detect advantages in favour of either dosing strategy. With abundant positive pre-clinical data as well as document in vivo PK/PD advantages, large multi-centre trials are needed to describe whether continuous administration of beta-lactams is truly more effective than intermittent dosing.
  2. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et al.
    Clin Pharmacokinet, 2013 May;52(5):373-84.
    PMID: 23475568 DOI: 10.1007/s40262-013-0046-9
    Metformin is contraindicated in patients with renal impairment; however, there is poor adherence to current dosing guidelines. In addition, the pharmacokinetics of metformin in patients with significant renal impairment are not well described. The aims of this study were to investigate factors influencing the pharmacokinetic variability, including variant transporters, between healthy subjects and patients with type 2 diabetes mellitus (T2DM) and to simulate doses of metformin at varying stages of renal function.
  3. Wu DBC, Chaiyakunapruk N, Pratoomsoot C, Lee KKC, Chong HY, Nelson RE, et al.
    Epidemiol Infect, 2018 03;146(4):496-507.
    PMID: 29446343 DOI: 10.1017/S0950268818000158
    Simulation models are used widely in pharmacology, epidemiology and health economics (HEs). However, there have been no attempts to incorporate models from these disciplines into a single integrated model. Accordingly, we explored this linkage to evaluate the epidemiological and economic impact of oseltamivir dose optimisation in supporting pandemic influenza planning in the USA. An HE decision analytic model was linked to a pharmacokinetic/pharmacodynamics (PK/PD) - dynamic transmission model simulating the impact of pandemic influenza with low virulence and low transmissibility and, high virulence and high transmissibility. The cost-utility analysis was from the payer and societal perspectives, comparing oseltamivir 75 and 150 mg twice daily (BID) to no treatment over a 1-year time horizon. Model parameters were derived from published studies. Outcomes were measured as cost per quality-adjusted life year (QALY) gained. Sensitivity analyses were performed to examine the integrated model's robustness. Under both pandemic scenarios, compared to no treatment, the use of oseltamivir 75 or 150 mg BID led to a significant reduction of influenza episodes and influenza-related deaths, translating to substantial savings of QALYs. Overall drug costs were offset by the reduction of both direct and indirect costs, making these two interventions cost-saving from both perspectives. The results were sensitive to the proportion of inpatient presentation at the emergency visit and patients' quality of life. Integrating PK/PD-EPI/HE models is achievable. Whilst further refinement of this novel linkage model to more closely mimic the reality is needed, the current study has generated useful insights to support influenza pandemic planning.
  4. Kamal MA, Smith PF, Chaiyakunapruk N, Wu DBC, Pratoomsoot C, Lee KKC, et al.
    Br J Clin Pharmacol, 2017 07;83(7):1580-1594.
    PMID: 28176362 DOI: 10.1111/bcp.13229
    AIMS: A modular interdisciplinary platform was developed to investigate the economic impact of oseltamivir treatment by dosage regimen under simulated influenza pandemic scenarios.

    METHODS: The pharmacology module consisted of a pharmacokinetic distribution of oseltamivir carboxylate daily area under the concentration-time curve at steady state (simulated for 75 mg and 150 mg twice daily regimens for 5 days) and a pharmacodynamic distribution of viral shedding duration obtained from phase II influenza inoculation data. The epidemiological module comprised a susceptible, exposed, infected, recovered (SEIR) model to which drug effect on the basic reproductive number (R0 ), a measure of transmissibility, was linked by reduction of viral shedding duration. The number of infected patients per population of 100 000 susceptible individuals was simulated for a series of pandemic scenarios, varying oseltamivir dose, R0 (1.9 vs. 2.7), and drug uptake (25%, 50%, and 80%). The number of infected patients for each scenario was entered into the health economics module, a decision analytic model populated with branch probabilities, disease utility, costs of hospitalized patients developing complications, and case-fatality rates. Change in quality-adjusted life years was determined relative to base case.

    RESULTS: Oseltamivir 75 mg relative to no treatment reduced the median number of infected patients, increased change in quality-adjusted life years by deaths averted, and was cost-saving under all scenarios; 150 mg relative to 75 mg was not cost effective in low transmissibility scenarios but was cost saving in high transmissibility scenarios.

    CONCLUSION: This methodological study demonstrates proof of concept that the disciplines of pharmacology, disease epidemiology and health economics can be linked in a single quantitative framework.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links