Displaying all 2 publications

Abstract:
Sort:
  1. Baris S, Abolhassani H, Massaad MJ, Al-Nesf M, Chavoshzadeh Z, Keles S, et al.
    J Allergy Clin Immunol Pract, 2023 Jan;11(1):158-180.e11.
    PMID: 36265766 DOI: 10.1016/j.jaip.2022.10.003
    Human inborn errors of immunity (IEI) are a group of 485 distinct genetic disorders affecting children and adults. Signs and symptoms of IEI are heterogeneous, and accurate diagnosis can be challenging and depends on the available human expertise and laboratory resources. The Middle East and North Africa (MENA) region has an increased prevalence of IEI because of the high rate of consanguinity with a predominance of autosomal recessive disorders. This area also exhibits more severe disease phenotypes compared with other regions, probably due to the delay in diagnosis. The MENA-IEI registry network has designed protocols and guidelines for the diagnosis and treatment of IEI, taking into consideration the variable regional expertise and resources. These guidelines are primarily meant to improve the care of patients within the region, but can also be followed in other regions with similar patient populations.
  2. Bosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, et al.
    Sci Immunol, 2025 Jan 10;10(103):eadq1697.
    PMID: 39792639 DOI: 10.1126/sciimmunol.adq1697
    Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of RAG-mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic RAG variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons. T helper 2 (TH2) cell skewing and a prominent inflammatory signature characterize Omenn syndrome, whereas more hypomorphic forms of RAG deficiency are associated with a type 1 immune profile both in blood and tissues. We used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis to define the cell lineage-specific contribution to the immunopathology of the distinct RAG phenotypes. These insights may help improve the diagnosis and clinical management of the various forms of the disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links