Displaying all 3 publications

Abstract:
Sort:
  1. Both S, Elias DMO, Kritzler UH, Ostle NJ, Johnson D
    Ecol Evol, 2017 Nov;7(22):9307-9318.
    PMID: 29187970 DOI: 10.1002/ece3.3460
    In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.
  2. Both S, Riutta T, Paine CET, Elias DMO, Cruz RS, Jain A, et al.
    New Phytol, 2019 03;221(4):1853-1865.
    PMID: 30238458 DOI: 10.1111/nph.15444
    Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
  3. Marsh CJ, Turner EC, Blonder BW, Bongalov B, Both S, Cruz RS, et al.
    Science, 2025 Jan 10;387(6730):171-175.
    PMID: 39787239 DOI: 10.1126/science.adf9856
    The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear. Variables that were directly impacted by the physical process of timber extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas measures of biodiversity and ecosystem functioning were generally resilient to logging but more affected by conversion to oil palm plantation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links