Displaying all 3 publications

Abstract:
Sort:
  1. Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG, et al.
    Expert Opin Ther Targets, 2018 03;22(3):247-261.
    PMID: 29417868 DOI: 10.1080/14728222.2018.1439015
    INTRODUCTION: New treatments are required to improve clinical outcomes in patients with acute myocardial infarction (AMI), for reduction of myocardial infarct (MI) size and preventing heart failure. Following AMI, acute ischemia/reperfusion injury (IRI) ensues, resulting in cardiomyocyte death and impaired cardiac function. Emerging studies have implicated a fundamental role for non-coding RNAs (microRNAs [miRNA], and more recently long non-coding RNAs [lncRNA]) in the setting of acute myocardial IRI. Areas covered: In this article, we discuss the roles of miRNAs and lncRNAs as potential biomarkers and therapeutic targets for the detection and treatment of AMI, review their roles as mediators and effectors of cardioprotection, particularly in the settings of interventions such as ischemic pre- and post-conditioning (IPC & IPost) as well as remote ischemic conditioning (RIC), and highlight future strategies for targeting ncRNAs to reduce MI size and prevent heart failure following AMI. Expert opinion: Investigating the roles of miRNAs and lncRNAs in the setting of AMI has provided new insights into the pathophysiology underlying acute myocardial IRI, and has identified novel biomarkers and therapeutic targets for detecting and treating AMI. Pharmacological and genetic manipulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
  2. Ong SB, Lu S, Katwadi K, Ismail NI, Kwek XY, Hausenloy DJ
    Future Cardiol, 2017 05;13(3):195-198.
    PMID: 28569551 DOI: 10.2217/fca-2017-0012
  3. Ong SB, Lee WH, Shao NY, Ismail NI, Katwadi K, Lim MM, et al.
    Stem Cell Reports, 2019 03 05;12(3):597-610.
    PMID: 30799273 DOI: 10.1016/j.stemcr.2019.01.017
    The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult-simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links