METHODOLOGY: The research involved five subjects receiving mandibular advancement surgery (MAS). The quantification of TKE was performed both before and throughout the method using a combination of computational fluid dynamics (CFD) models and empirical measurements. A suitable grid size of 2.6 million cells for CFD simulations was determined by grid sensitivity analysis and corroborated with physical measurements.
RESULTS: The findings indicated a significant increase in TKE for each individual post-procedure, with increments varying from 23 % to 460 %. The elevated TKE indicates a more rapid airflow in the upper airway post-surgery. This is probably attributable to alterations in the airway's morphology resulting from the surgery. The observed rise in speed and turbulence is theoretically supported by Bernoulli's principle, which elucidates the relationship between air flow velocity and the pressure it generates.
CONCLUSIONS: This study demonstrates that mandibular advancement surgery efficiently alleviates OSA by markedly enhancing airflow and diminishing turbulence in the upper airway post-treatment. The use of physical validation and grid sensitivity analysis in computational fluid dynamics simulations underscores the meticulous technique utilised, offering a comprehensive assessment of the efficacy of the surgical interventions for OSA.