The use of bicortical screws to fix metacarpal fractures has been suggested to provide no added biomechanical advantage over unicortical screw fixation. However, this was only demonstrated in static loading regimes, which may not be representative of biological conditions. The present study was done to determine whether similar outcomes are obtained when cyclic loading is applied. Transverse midshaft osteotomies were created in 20 metacarpals harvested from three cadavers. Fractures were stabilised using 2.0 mm mini fragment plates fixed with either bicortical or unicortical screw fixation. These fixations were tested to failure with a three-point bending cyclic loading protocol using an electromechanical microtester and a 1 kN load cell. The mean load to failure was 370 N (SD 116) for unicortical fixation and 450 N (SD 135) for bicortical fixation. Significant differences between these two constructs were observed. A biomechanical advantage was found when using bicortical screws in metacarpal fracture plating.
Carboxymethyl chitin (CMChit) has the potential to be used as a solid polymer electrolyte (SPE) based on its ionic conductivity value of the order of 10-6 S·cm-1 in self-standing membranes. In controlled humidity of 65RH%, carboxymethyl chitin based membrane blended with 1-Butyl-3-methylimidazolium acetate (BMIM[Ac]) ionic liquid (IL) (40 wt%) showed a threshold value of ionic conductivity in the order of 10-4 S·cm-1 and electrochemical stability was up to 2.93 V. The effects of the relative humidity and ionic liquid weight fraction on the ionic conductivity and structural changes were investigated in detail. Furthermore, the X-ray diffraction (XRD) diffractogram indicated a clear reduction of crystallinity of the CMChit. The Field-emission scanning electron microscopy (FESEM) observation of the cross-sections confirmed the homogeneity of the prepared blend. This electrolyte was tested in symmetric cells based on Zn//SPE//Zn and showed good reversibility and potential for application in proton-conducting batteries.