Displaying all 2 publications

Abstract:
Sort:
  1. Tan FHP, Liu G, Lau SA, Jaafar MH, Park YH, Azzam G, et al.
    Benef Microbes, 2020 Feb 19;11(1):79-89.
    PMID: 32066253 DOI: 10.3920/BM2019.0086
    Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.
  2. Liu G, Tan FH, Lau SA, Jaafar MH, Chung FY, Azzam G, et al.
    J Appl Microbiol, 2020 Jul 08.
    PMID: 32640111 DOI: 10.1111/jam.14773
    AIMS: To utilize transgenic GMR-Aβ42 Drosophila melanogaster as a model to evaluate potential Alzheimer's disease (AD)-reversal effects via the administration of lactic acid bacteria (LAB) strains, and associations of LAB with changes in gut microbiota profiles.

    METHODS AND RESULTS: Wild-type flies (Oregon-R) were crossed with glass multimer reporter-GAL4 (GMR-GAL4) to produce GMR-OreR (Control), while UAS-Aβ42 (#33769) were crossed with GMR-GAL4 to produce transgenic Drosophila line that expressed Aβ42 (GMR-Aβ42). Feed containing seven different LAB strains (Lactobacillus paracasei 0291, Lactobacillus helveticus 1515, Lactobacillus reuteri 30242, L. reuteri 8513d, Lactobacillus fermentum 8312, Lactobacillus casei Y, Lactobacillus sakei Probio65) were given to GMR-Aβ42 respectively, while feed without LAB strains were given to control and transgenic GMR-Aβ42.nf Drosophila lines. The morphology of the eyes was viewed with scanning electron microscopy (SEM). The changes in gut microbiota profiles associated with LAB were analysed using 16s high throughput sequencing. Malformation of eye structures in transgenic GMR-Aβ42 Drosophila were reversed upon the administration of LAB strains, with more prevalent effects from L. sakei Probio65 and L. paracasei 0291. The GMR-Aβ42.nf group showed dominance of Wolbachia in the gut, a genus that was almost absent in the normal control group (P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links