Displaying all 6 publications

Abstract:
Sort:
  1. Lau WLS, Law IK, Liow GR, Hii KS, Usup G, Lim PT, et al.
    Harmful Algae, 2017 12;70:52-63.
    PMID: 29169568 DOI: 10.1016/j.hal.2017.10.006
    In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments.
  2. Teng ST, Abdullah N, Hanifah AH, Tan SN, Gao C, Law IK, et al.
    Toxicon, 2021 Sep 30;202:132-141.
    PMID: 34600910 DOI: 10.1016/j.toxicon.2021.09.018
    In March 2018, an algal bloom of Pseudo-nitzschia was detected, for the first time, in a semi-enclosed lagoon in Miri, Sarawak, Malaysia Borneo. The plankton samples were collected for cell enumeration and species identification by electron microscopy and molecular characterization. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to detect and quantify the neurotoxin domoic acid (DA) in both the plankton and shellfish samples. The abundance of Pseudo-nitzschia cells ranged from 5.6 × 105 to 3.5 × 106 cell L-1 during the bloom event. Morphological observation of the cells by transmission electron microscopy showed that the plankton samples comprised a single Pseudo-nitzschia morphotype resembling P. cuspidata. The ITS2 sequence-structure phylogenetic inference further supported the species identity as Pseudo-nitzschia cuspidata. Low levels of DA were detected in the plankton samples, with cellular DA, particulate DA, and dissolved DA of 257-504 fg DA cell-1, 676 ng L-1, and 15 ng L-1, respectively. The amount of DA, 8 μg g-1 tissue, was found present in the shellfish sample (Magallana sp.) which is below the regulatory limit of 20 μg DA g-1 tissue. The study documented, for the first time, DA contamination in shellfish that associated with bloom of P. cuspidata in the Western Pacific region.
  3. Hanifah AH, Teng ST, Law IK, Abdullah N, Chiba SUA, Lum WM, et al.
    Harmful Algae, 2022 Dec;120:102338.
    PMID: 36470602 DOI: 10.1016/j.hal.2022.102338
    Thirty-four strains of Heterocapsa were established from Malaysian waters and their morphologies were examined by light, scanning, and transmission electron microscopy. Three species, H. bohaiensis, H. huensis, and H. rotundata, and three new species, H. borneoensis sp. nov., H. limii sp. nov., and H. iwatakii sp. nov. were described in this study. The three species were differentiated morphologically by unique characteristics of cell size, shape, displacement of the cingulum, shape and position of nucleus, the number and position of pyrenoids, and body scale ultrastructure. The species delimitations were robustly supported by the molecular data. A light-microscopy-based key to species of Heterocapsa is established, with two major groups, i.e., species with a single pyrenoid, and species with multiple pyrenoids. Bioassays were conducted by exposing Artemia nauplii to Heterocapsa densities of 1-5 × 105 cells mL-1, and treatments exposed to H. borneoensis showed naupliar mortality, while no naupliar death was observed in the treatments exposed to cells of H. bohaiensis, H. huensis, H. limii, and H. iwatakii. Naupliar death was observed during the initial 24 h for both tested H. borneoensis strains, and mortality rates increased up to 50% after 72-h exposure. This study documented for the first time the diversity and cytotoxic potency of Heterocapsa species from Malaysian waters.
  4. Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, et al.
    Harmful Algae, 2023 Nov;129:102515.
    PMID: 37951609 DOI: 10.1016/j.hal.2023.102515
    A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
  5. Abdullah N, Teng ST, Hanifah AH, Law IK, Tan TH, Krock B, et al.
    Harmful Algae, 2023 Aug;127:102475.
    PMID: 37544675 DOI: 10.1016/j.hal.2023.102475
    This study describes two novel species of marine dinophytes in the genus Alexandrium. Morphological characteristics and phylogenetic analyses support the placement of the new taxa, herein designated as Alexandrium limii sp. nov. and A. ogatae sp. nov. Alexandrium limii, a species closely related to A. taylorii, is distinguished by having a shorter 2'/4' suture length, narrower plates 1' and 6'', with larger length: width ratios, and by the position of the ventral pore (Vp). Alexandrium ogatae is distinguishable with its metasert plate 1' having almost parallel lateral margins, and by lacking a Vp. Production of paralytic shellfish toxins (PSTs), cycloimines, and goniodomins (GDs) in clonal cultures of A. ogatae, A. limii, and A. taylorii were examined analytically and the results showed that all strains contained GDs, with GDA as major variants (6-14 pg cell-1) for all strains except the Japanese strain of A. limii, which exclusively had a desmethyl variant of GDA (1.4-7.3 pg cell-1). None of the strains contained detectable levels of PSTs and cycloimines.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links