Displaying all 2 publications

Abstract:
Sort:
  1. Cheong YL, Leitão PJ, Lakes T
    Spat Spatiotemporal Epidemiol, 2014 Jul;10:75-84.
    PMID: 25113593 DOI: 10.1016/j.sste.2014.05.002
    The transmission of dengue disease is influenced by complex interactions among vector, host and virus. Land use such as water bodies or certain agricultural practices have been identified as likely risk factors for dengue because of the provision of suitable habitats for the vector. Many studies have focused on the land use factors of dengue vector abundance in small areas but have not yet studied the relationship between land use factors and dengue cases for large regions. This study aims to clarify if land use factors other than human settlements, e.g. different types of agricultural land use, water bodies and forest are associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malaysia. From the correlative relationship, we aim to generate a prediction risk map. We used Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the factors with high predictive accuracies. Our model with a cross-validated performance score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed that the most important land use factors are human settlements (model importance of 39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%) and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset for improving surveillance and control interventions for dengue.
  2. Cheong YL, Burkart K, Leitão PJ, Lakes T
    Int J Environ Res Public Health, 2013 Nov 26;10(12):6319-34.
    PMID: 24287855 DOI: 10.3390/ijerph10126319
    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41-32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26-28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links