Myocardial infarct extension, a process involving the enlargement of infarct and border zone, leads to progressive degeneration of left ventricular (LV) function and eventually gives rise to heart failure. Despite carrying a high risk, the causation of infarct extension is still a subject of much speculation. In this study, patient-specific LV models were developed to investigate the correlation between infarct extension and impaired regional mechanics. Subsequently, sensitivity analysis was performed to examine the causal factors responsible for the impaired regional mechanics observed in regions surrounding the infarct and border zone. From our simulations, fibre strain, fibre stress and fibre stress-strain loop (FSSL) were the key biomechanical variables affected in these regions. Among these variables, only FSSL was correlated with infarct extension, as reflected in its work density dissipation (WDD) index value, with high WDD indices recorded at regions with infarct extension. Impaired FSSL is caused by inadequate contraction force generation during the isovolumic contraction and ejection phases. Our further analysis revealed that the inadequacy in contraction force generation is not necessarily due to impaired myocardial intrinsic contractility, but at least in part, due to inadequate muscle fibre stretch at end-diastole, which depresses the ability of myocardium to generate adequate contraction force in the subsequent systole (according to the Frank-Starling law). Moreover, an excessively stiff infarct may cause its neighbouring myocardium to be understretched at end-diastole, subsequently depressing the systolic contractile force of the neighbouring myocardium, which was found to be correlated with infarct extension.
Flow energetics have been proposed as early indicators of progressive left ventricular (LV) functional impairment in patients with myocardial infarction (MI), but its correlation with individual MI parameters has not been fully explored. Using electro-fluid-structure interaction LV models, this study investigated the correlation between four MI parameters: infarct size, infarct multiplicity, regional enhancement of contractility at the viable myocardium area (RECVM), and LV mechanical dyssynchrony (LVMD) with intraventricular vortex and flow energetics. In LV with small infarcts, our results showed that infarct appearance amplified the energy dissipation index (DI), where substantial viscous energy loss was observed in areas with high flow velocity and near the infarct-vortex interface. The LV with small multiple infarcts and RECVM showed remarkable DI increment during systole and diastole. In correlation analysis, the systolic kinetic energy fluctuation index (E') was positively related to ejection fraction (EF) (R2 = 0.982) but negatively correlated with diastolic E' (R2 = 0.970). Diastolic E' was inversely correlated with vortex kinetic energy (R2 = 0.960) and vortex depth (R2 = 0.876). We showed an excessive systolic DI could differentiate infarcted LV with normal EF from healthy LV. Strong flow acceleration, LVMD, and vortex-infarct interactions were predominant factors that induced excessive DI in infarcted LVs. Instead of causing undesired flow turbulence, high systolic E' suggested the existence of energetic flow acceleration, while high diastolic E' implied an inefficient diastolic filling. Thus, systolic E' is not a suitable early indicator for progressive LV dysfunction in MI patients, while diastolic E' may be a useful index to indicate diastolic impairment in these patients.
Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.