Displaying all 4 publications

Abstract:
Sort:
  1. Leong JY, Wong JE
    J Sports Sci, 2016 Mar 7.
    PMID: 26950687
    This study examines the accuracy of three popular, free Android-based pedometer applications (apps), namely, Runtastic (RT), Pacer Works (PW), and Tayutau (TY) in laboratory and free-living settings. Forty-eight adults (22.5 ± 1.4 years) completed 3-min bouts of treadmill walking at five incremental speeds while carrying a test smartphone installed with the three apps. Experiment was repeated thrice, with the smartphone placed either in the pants pockets, at waist level, or secured to the left arm by an armband. The actual step count was manually counted by a tally counter. In the free-living setting, each of the 44 participants (21.9 ± 1.6 years) carried a smartphone with installed apps and a reference pedometer (Yamax Digi-Walker CW700) for 7 consecutive days. Results showed that TY produced the lowest mean absolute percent error (APE 6.7%) and was the only app with acceptable accuracy in counting steps in a laboratory setting. RT consistently underestimated steps with APE of 16.8% in the laboratory. PW significantly underestimated steps when the smartphone was secured to the arm, but overestimated under other conditions (APE 19.7%). TY was the most accurate app in counting steps in a laboratory setting with the lowest APE of 6.7%. In the free-living setting, the APE relative to the reference pedometer was 16.6%, 18.0%, and 16.8% for RT, PW, and TY, respectively. None of the three apps counted steps accurately in the free-living setting.
  2. Leong JY, Tey BT, Tan CP, Chan ES
    ACS Appl Mater Interfaces, 2015 Aug 5;7(30):16169-76.
    PMID: 26148344 DOI: 10.1021/acsami.5b04486
    Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (<100 μm). We report, for the first time, a nozzleless and surfactant-free approach to fabricate oil-core biopolymeric microcapsules through ionotropic gelation at the interface of an O/W Pickering emulsion. This approach involves the self-assembly of calcium carbonate (CaCO3) nanoparticles at the interface of O/W emulsion droplets followed by the addition of a polyanionic biopolymer into the aqueous phase. Subsequently, CaCO3 nanoparticles are dissolved by pH reduction, thus liberating Ca(2+) ions to cross-link the surrounding polyanionic biopolymer to form a shell that encapsulates the oil droplet. We demonstrate the versatility of this method by fabricating microcapsules from different types of polyanionic biopolymers (i.e., alginate, pectin, and gellan gum) and water-immiscible liquid cores (i.e., palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.
  3. Yeo JG, Wasser M, Kumar P, Pan L, Poh SL, Ally F, et al.
    Nat Biotechnol, 2020 06;38(6):757.
    PMID: 32467644 DOI: 10.1038/s41587-020-0574-4
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links