Displaying all 8 publications

Abstract:
Sort:
  1. Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, et al.
    Cancer Invest, 2019;37(8):393-414.
    PMID: 31502477 DOI: 10.1080/07357907.2019.1660887
    Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
  2. Molouki A, Mehrabadi MHF, Bashashati M, Akhijahani MM, Lim SHE, Hajloo SA
    Trop Anim Health Prod, 2019 Jun;51(5):1247-1252.
    PMID: 30689157 DOI: 10.1007/s11250-019-01817-1
    BACKGROUND: Based on our previous work, it was discovered that some Newcastle disease virus (NDV) isolates from backyard poultry between 2011 and 2013 in Iran formed a new separate cluster when phylogenetic analysis based on the complete F gene sequence was carried out. The novel cluster was designated subgenotype VII(L) and published.

    AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.

    RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.

    CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.

  3. Song AA, In LLA, Lim SHE, Rahim RA
    Microb Cell Fact, 2017 04 04;16(1):55.
    PMID: 28376880 DOI: 10.1186/s12934-017-0669-x
    Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
  4. Mehrabadi MHF, Bahonar A, Mirzaei K, Molouki A, Ghalyanchilangeroudi A, Ghafouri SA, et al.
    Trop Anim Health Prod, 2018 Mar;50(3):677-682.
    PMID: 29027604 DOI: 10.1007/s11250-017-1438-x
    Avian influenza virus (AIV) H9N2 subtype is endemic in Iran and causes substantial economic loss to the growing poultry industry within the country. In this study, a cross-sectional analysis was carried out to determine the sero-prevalence of H9N2 in several commercial farms between the years 2014 and 2015. The comparison of the mean of serum titers and the ratio of sero-positive birds between all units were analyzed using one-way ANOVA test. In 2014, a total of 77 farms (58 turkey farms, 14 quail farms, and 5 partridge farms) and 894 birds (682 turkeys, 154 quails, and 58 partridges) were sampled while in 2015, a total of 69 farms (54 turkey farms, 8 quail farms, and 7 partridge farms) and 856 birds (675 turkeys, 105 quails, and 76 partridges) were sampled. Of that, 52 of 77 sampled farms (67.5%) and 437 of 894 samples (48.9%) were positive for H9N2 in 2014 while. Forty-one of 69 farms (59.4%) and 307 of 856 sera (35.9%) were positive in 2015. Furthermore, the mean titer of partridge farms was significantly lower than that of turkey farms (p  0.05). Our results indicated that H9N2 is circulating in these farms. Since many more such farms are being established for operations, in addition to the threat of emergence and continuous reemergence of the disease in these farms, enhanced veterinary biosecurity measures on farms are required for mitigation.
  5. Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AA
    PeerJ, 2022;10:e12648.
    PMID: 35251775 DOI: 10.7717/peerj.12648
    BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA.

    METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88.

    RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88.

    CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.

  6. Xing SY, Wei LQ, Abushelaibi A, Lai KS, Lim SHE, Maran S
    Drug Target Insights, 2022;16:88-96.
    PMID: 36761068 DOI: 10.33393/dti.2022.2522
    INTRODUCTION:: Detection and diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) are important in ensuring a correct and effective treatment, further reducing its spread. A wide range of molecular approaches has been used for the diagnosis of antimicrobial resistance (AMR) in MRSA. This review aims to study and appraise widely used molecular diagnostic methods for detecting MRSA.

    METHODS:: This meta-narrative review was performed by searching PubMed using the following search terms: (molecular diagnosis) AND (antimicrobial resistance) AND (methicillin-resistant Staphylococcus aureus). Studies using molecular diagnostic techniques for the detection of MRSA were included, while non-English language, duplicates and non-article studies were excluded. After reviewing the libraries and a further manual search, 20 studies were included in this article. RAMESES publication standard for narrative reviews was used for this synthesis.

    RESULTS:: A total of 20 full papers were reviewed and appraised in this synthesis, consisting of PCR technique (n = 7), deoxyribonucleic acid (DNA) Microarray (n = 1), DNA sequencing (n = 2), Xpert MRSA/SA BC assay (n = 2), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (n = 2), MLST (n = 4), SCCmec typing (n = 1) and GENECUBE (n = 1).

    DISCUSSION:: Different diagnostic methods used to diagnose MRSA have been studied in this review. This study concludes that PCR has been extensively used due to its higher sensitivity and cost-effectiveness in the past five years

  7. Chong CW, Alkatheeri AHS, Ali N, Tay ZH, Lee YL, Paramasivam SJ, et al.
    Gut Pathog, 2020;12:14.
    PMID: 32175011 DOI: 10.1186/s13099-020-00352-x
    Background: The rise of nature-based ecotourism in the past decade has introduced unprecedented challenges in managing the increasing interaction between humans and animals. The potential transmission of antibiotic resistant microbes between humans and non-human primate populations is a concern due to their genetic similarity. Malaysia is well known for hotspots of wildlife diversity where non-human primates like monkeys and orangutans have become popular tourist attractions. In this study, we assessed the prevalence of antimicrobial resistant Staphylococcus aureus, Enterococcus species, and other Enterobacteriaceae in the faeces of human (HS) and two non-human primates (NHP) in Malaysia, the Long-tailed macaque (Macaca fascicularis, MF) and Silvered leaf monkey (Trachypithecus cristatus, TC). In addition, the faecal bacterial composition was profiled to evaluate the potential association between antibiotic resistant profiles and composition of gut microbiota.

    Results: We tested the isolated bacteria using a selection of antibiotics. The results showed that both the number of antibiotic resistant strains and resistance level were higher in humans than NHPs. Overall, the composition of gut microbiome and pattern of antibiotic resistance showed that there was higher similarity between MF and TC, the two NHPs, than with HS. In addition, samples with higher levels of antibiotic resistance showed lower bacterial richness. Homo sapiens had the lowest bacterial diversity and yet it had higher abundance of Bacteroides. In contrast, NHPs displayed higher bacterial richness and greater prevalence of Firmicutes such as Ruminococceae and Oscillospira.

    Conclusion: Higher antibiotic susceptibility in NHPs is likely related to low direct exposure to antibiotics. The lack of resistance may also suggest limited antimicrobial resistance transmission between humans and NHP. Nonetheless, continued monitoring over a long period will help mitigate the risk of anthropozoonosis and zooanthroponosis.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links